Total No. of Printed Pages—7 4 SEM TDC PHYH (CBCS) C 10

2024

(May/June)

PHYSICS (Core)

Paper: C-10

(Analog Systems and Applications)

Full Marks: 53 Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option :

1×5=5

- (a) The width of the depletion layer of a junction
 - (i) is independent of applied voltage
 - (ii) is increased under reverse bias
 - (iii) decreases with light doping
 - (iv) increases with heavy doping

- (b) The colour of the emitted light of LED depends on the
 - (i) construction method
 - (ii) applied voltage
 - (iii) energy gap of the material used
 - (iv) None of the above
- (c) In RC coupled amplifier, voltage gain over mid-frequency range
 - (i) is increasing
 - (ii) is constant
 - (iii) is decreasing
 - (iv) is zero
- (d) Oscillators employ
 - (i) negative feedback
 - (ii) no feedback
 - (iii) positive feedback
 - (iv) None of the above

- (e) Open-loop voltage gain of OP-AMP
 - (i) is small
- (ii) is large
 - (iii) is zero
 - (iv) None of the above
- 2. (a) What happens to the depletion region of junction diode under forward and reverse bias condition? Explain.

Or

Define Fermi level in a semiconductor.

How does its position change when

(i) donor and (ii) acceptor are added to
the semiconductor?

1+1+1=3

(b) Derive an expression for the width of depletion layer of a p-n junction diode.

respectively the Or will hadden access

Define the mobility of charge carriers and conductivity. What is the effect of temperature on the conductivity of a semiconductor? 3

3.	(a)	Explain with circuit diagram the action of Zener diode as a voltage regulator.	3	
	(b)	Write about working and construction of photovoltaic cell.	2	
4.	(a)	What do you mean by quiescent point or Q-point? What is the best position of Q-point on the DC load line in the transistor characteristics?	2	
	(b)	Explain active region, saturation region and cut-off region in transistor operation.	3	
		Or		9
		The collector leakage current in a transistor is $300 \mu A$ in CE arrangement. If the transistor is now connected in the CB arrangement, what will be the leakage current? Given $\beta = 100$.		
5.	(a)	Draw a circuit for voltage-divider bias method. What are its advantages and disadvantages?	-3	
	(b)	Derive expression for the current gain		

and the voltage gain of a single-stage common-emitter transistor amplifier

using h-parameters.

	ter amplifier is connected
(c)	A CE transistor amplifier is connected with a load resistance $2 k\Omega$. If the
	h -parameters of the determinant $h_{ie} = 1000 \Omega$, $h_{re} = 10^{-4}$, $h_{fe} = 100$ and $h_{ie} = 1000 \Omega$, $h_{re} = 10^{-4}$, $h_{fe} = 100$
	$h_{ie} = 1000 \Omega$, $h_{re} = 10^{\circ}$, h_{fe}
	10.10-65 find the current gain,
	$h_{oe} = 12 \times 10^{-6}$, input impedance and voltage gain.
	input impedant

- Draw the circuit diagram of an RC coupled transistor amplifier and give its 6. (a) mid-frequency equivalent circuit. Derive an expression for gain at the mid-2+2=4 frequency range.
 - (b) What is non-linear distortion? How can 1+2=3it be minimized?
 - Calculate the Barkhausen's criterion for self-sustained oscillations.

An RC phase-shift oscillator has the $R_L = 3 \cdot 3 \text{ k}\Omega,$ parameter values $R = 5.6 \text{ k}\Omega$ and $C = 0.01 \mu\text{F}$. Calculate frequency of oscillations and the h_{fe} required for sustaining the oscillations.

24P/1275

(Continued)

3

24P/1275

(Turn Over)

2

3

7. (a) Draw the basic non-inverting amplifier with an input resistance R_1 and a feedback resistance R_f . Assuming the OP-AMP to be ideal, derive the expression for the voltage gain of the non-inverting amplifier.

Calculate the CMRR of OP-AMP.

3

Explain with circuit diagram of an OP-AMP as integrator.

Or

The input to the differentiator OP-AMP is a sinusoidal voltage of peak value 10 mV and frequency 2 kHz. Find the output, if $R = 200 \text{ k}\Omega$ and $C = 2 \mu\text{F}$.

Explain the significance of virtual ground of a basic inverting amplifier. What do you understand by closed-loop and open-loop voltage gain of an

or and some of Or. as aday sel Consider the inverting OP-AMP with $R_1 = 10 \text{ k}\Omega$, $R_f = 100 \text{ k}\Omega$, $V_{\text{in}} = 1 V_{\text{pp}}$ and power supply voltages ±18 V. Find (i) closed-loop voltage gain and (ii) the maximum operating frequency. The slew rate is 0.5 V/µs.

binary the working of 8. Explain weighted-resistor network.

Or

3

Briefly describe the resolution (step size) and accuracy specifications of a D/A converter.

* * *