Total No. of Printed Pages-4

3 SEM TDC MTMH (CBCS) C 7

2023

(Nov/Dec)

MATHEMATICS

(·Core)

Paper : C-7

(PDE and Systems of ODE)

Full Marks : 60 Pass Marks : 24 Time : 3 hours

The figures in the margin indicate full marks for the questions

1.	(a)	Write the degree of the equation	
		$x^2 p^2 + y^2 r^{\frac{1}{3}} = z^2$	1
	(b)	Define complete integral of a differential equation.	1
	(c)	Find the complete solution of $p^2 + q^2 = m$.	1
	(d)	Form the differential equation of the set of all right circular cones whose axes coincide with z-axis.	5
		Or	
•		Define quasilinear partial differential equation. Solve $\frac{y^2z}{dx + xzdy} = y^2$.	

х

24P/63

(Turn Over)

(2)

(e) Solve
$$pz - qz = z^2 + (x + y)^2$$

Or

Find the integral surface of $x^2p + y^2q + z^2 = 0$ which passes through the hyperbola

 $xy = x + y, \ z = 1.$

- 2. (a) Write Charpit's auxiliary equations for $q = 3p^2$.
 - (b) Find complete integral of any one of the following :
 - (i) pxy + pq + qy = yz
 - (ii) $z^2 = pqxy$
 - (iii) px + qy + pq = 0
 - (c) Find a complete integral of $p_1x_1 + p_2x_2 = p_3^2$

6

1

(Continued)

5

2

4

Solve the boundary value problem $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ with $u(x, 0) = x^2(25 - x^2)$ by the method of separation of variables.

Or

3. (a) Write the condition when the equation Rr+Ss+Tt+f(x, y, z, p, q) is elliptic.
(b) Classic

(b) Classify the operator

$$t\frac{\partial^2 u}{\partial t^2} + 2\frac{\partial^2 u}{\partial x \partial t} + x\frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial x}$$
 2

(3)

(c) Show that
$$u = f(x+y) + g(y-x)$$
 satisfies
the equation $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$ where f and
g are functions.

(d) Reduce the following equation to canonical form :

$$\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial y^2}$$

Or

Derive the one-dimensional heat equation.

- 4. (a) Write the general form of twodimensional heat equation.
 - (b) Fill in the blank :

The partial differential equation in case of vibrating string problem is formulated from the law of ____.

- (c) Solve the one-dimensional wave equation by the method of separation of variables.
 - Or

Find the solution of $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ such that $y = p_0 \cos pt$ where p_0 is constant when x = l and y = 0 when x = 0.

24P/63

(Turn Over)

2

1

1

6

- 5. (a) Give an example of a normal form linear system with variable coefficient.
 - (b) Let $L \equiv D^2 + 2$, $f(t) = e^{2t} + t^2$, where $D \equiv \frac{d}{dt}$. Find Lf(t).
 - (c) Transform the linear differential $m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0$ equation into system of first-order differential equations.
 - (d)Describe Picard method of successive approximations.

Or

Compute y(0.2) for the differential equation $\frac{dy}{dx} = y^2 - x^2$ with y(0) = 1using Euler's method.

(e) Solve any one of the following systems :

(i) $\frac{dx}{dt} - \frac{dy}{dt} - 2x + 4y = t$ $\frac{dx}{dt} + \frac{dy}{dt} - x - y = 1$

(ii)
$$\frac{dx}{dt} = 5x - 2y$$

 dy

$$\frac{1}{dt} = 4x - y$$

* * *

24P-2500/63

3 SEM TDC MTMH (CBCS) C 7

6

2

1

2