Total No. of Printed Pages-7

3 SEM TDC MTMH (CBCS) C 5

2023

(Nov/Dec)

MATHEMATICS

(Core)
Paper : C-5
(Theory of Real Functions)
$\frac{\text { Full Marks : } 80}{\text { Pass Marks : } 32}$

Time : 3 hours
The figures in the margin indicate full marks for the questions

1. (a) Give an example of a proper subset of \mathbb{R}, whose cluster points are the elements of the proper subset itself.
(b) State whether true or false :

In the definition of $\lim _{x \rightarrow c} f$ where c is a cluster point of the domain of f, it is immaterial whether f is defined at c or not.

12)

(c) Use the definition of limit of a function to show that

$$
\begin{equation*}
\lim _{x \rightarrow c} x=c \tag{1}
\end{equation*}
$$

(d) Use $\varepsilon-\delta$ definition to establish that

$$
\begin{equation*}
\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0 \tag{2}
\end{equation*}
$$

(e) Let $f: A \rightarrow \mathbb{R}$ where $A \subseteq \mathbb{R}$ and c is a cluster point of A. Show that if $\lim _{x \rightarrow c} f(x)=L$, then $\lim _{x \rightarrow c}|f(x)-L|=0$.
(f) Define a bounded function with a suitable example.
(g) Let $f: A \rightarrow \mathbb{R}$ where $A \subseteq \mathbb{R}$ and c is a cluster point of A. If $\lim _{x \rightarrow c} f<0$, then show that there exists a neighbourhood $V_{\delta}(c)$ of c such that $\forall x \in A \cap V_{\delta}(c)$ with $x \neq c, f(x)<0$.

Or
Use squeeze theorem to show that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

(h) Let $f: A \rightarrow \mathbb{R}$ and $g: B \rightarrow \mathbb{R}$ be functions where $A, B \subseteq \mathbb{R}$ and $f(A) \subseteq B$. If f is continuous at $c \in A$ and g is continuous at $b=f(c) \in B$, then show that the composition $g f: A \rightarrow \mathbb{R}$ is continuous at $c \in A$.
(i) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b] \subseteq \mathbb{R}$. Then show that f is bounded on $[a, b]$.
(j) Let $f: I \rightarrow \mathbb{R}$ be continuous on I, an interval. If $a, b \in I$ and $k \in \mathbb{R}$ satisfy $f(a)<k<f(b)$, then show that there exists a point $c \in I$ between a and b such that $f(c)=k$.
(k) Let $f: I \rightarrow \mathbb{R}$ be continuous where I is a closed bounded interval in \mathbb{R}. Show that the set $f(I)=\{f(x): x \in I\}$ is a closed bounded interval.
(l) Use sequential criteria of continuity to establish that Dirichlet's function is not continuous at any real numbers.

(4)

2. (a) State Caratheodory's theorem.
(b) State whether true or false :

Let x_{0} be an interior point of an interval I and the derivatives $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ exist and continuous in a neighbourhood of x_{0} with $f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=\ldots=f^{(n-1)}\left(x_{0}\right)=0 \quad$ and $f^{(n)}\left(x_{0}\right) \neq 0$. If n is odd, then f has no relative extremum at x_{0}.
(c) Use first derivative test to establish that f defined by $f(x)=x^{3}$ has no extremum at $x=0$.
(d) Find the relative extremum of the function $f(x)=\sum_{i=1}^{n}\left(a_{i}-x\right)^{2}$ where $a_{i} \in \mathbb{R}$; $1 \leq i \leq n$.
(e) Let f be continuous on an interval $[a, b]$ and differentiable on (a, c) and (c, b) where $c \in(a, b)$. Then if there exists a neighbourhood ($c-\delta, c+\delta$) of c in $[a, b]$ such that $f^{\prime}(x) \geq 0 \forall x \in(c-\delta, c)$ and $f^{\prime}(x) \leq 0 \forall x \in(c, c+\delta)$, then show that f has a relative maximum at c.
n

[^0]
16)

Or
Show that if $\alpha>1$, then

$$
(1+x)^{\alpha}>1+\alpha x \forall x>-1
$$

and $x \neq 0$.
3. (a) Consider Cauchy's mean value theorem for two functions f and g which are continuous on $[a, b]$ and differentiable on (a, b) with $g^{\prime}(x) \neq 0 \forall x \in(a, b)$. For what value of $g(x)$, Cauchy's mean value theorem reduces to mean value theorem?
(b) State Lagrange's form of remainder in Taylor's theorem for a function f defined on $[a, b]$.
(c) State Maclaurin's infinite series expansion about $x=0$ mentioning the interval of expansion.
(d) Investigate whether the function $f:(0, \infty) \rightarrow \mathbb{R}$ given by $f(x)=x \log x$ is convex or not.
(e) Investigate the function

$$
f(x)=(x-3)^{5}(x+1)^{4}
$$

for relative extrema.
(f) Let $f: I \rightarrow \mathbb{R}$ have second derivative on an open interval I of \mathbb{R}. Show that f is a convex function on I if and only if $f^{\prime \prime}(x) \geq 0 \forall x \in I$.

(7)

(g) Expand $\cos x$ in the Maclaurin's series. 5 Or

Expand $\log (1+x)$ in the Maclaurin's series.
(h) State and prove Taylor's theorem with Cauchy's remainder.

```
Or
```

-

[^0]:

