Total No. of Printed Pages-12

1 SEM FYUGP PHYC1

2023
(December)
PHYSICS
(Core)
Paper : PHYC1
Full Marks : 80
Pass Marks : 24

Time : 3 hours
The figures in the margin indicate full marks for the questions

1. उनত দিয়ाসমূহব পবা শুদ্ধ উত্তবটো বাছি উলিওব্বা : $1 \times 10=10$ Choose the correct answer from the following :
(a) জড় প্রসংগ প্রণাनी সাপেক্ষ ছিি. বেগেবে গতি কবা সকলো প্রসংগ প্রণাनी হ’ব
All frames of reference moving with a constant velocity with respect to an initial frame are
(i) জড় প্রসংগ প্রণাनी inertial frames of reference
(ii) অজড় প্রসংগ প্রণাनी
non-inertial frames of reference
(iii) ত্বড়িত প্রসংগ প্রণালী accelerated frames of reference
(iv) ত্বড়িত নোহোবা প্রসংগ প্রণালী non-accelerated frames of reference
(b) বল \vec{F} आ< ম্থিতিশক্তি V ব মাজব তলব কোনটো সম্বন্ধ শুদ্ধ?

Which of the following relations between force \vec{F} and potential energy V is correct?
(i) $\vec{F}=-\operatorname{grad} V$
(ii) $\vec{F}=-\operatorname{div} V$
(iii) $\vec{F}=-$ curl V
(iv) $\vec{F}=-\int V d V$
(c) E यদি কোনো এটা বস্তুব গতিশক্তি হয়, তেন্তে বস্ভটোব জড়তা ভ্রামক হ’ব

If E is the kinetic energy of a body, then the moment of inertia of the body is
(i) $2 E \times \omega^{2}$
(ii) $\frac{2 E}{\omega^{2}}$
(iii) $\frac{E}{\omega}$
(iv) $3 E \times \omega^{2}$
(d) কৌিिক ভबবেগ \vec{L} आ< টর $\vec{\tau}$ ব মাজব সम্বन্ধ $\frac{d \vec{L}}{d t}=\vec{\tau}$. তেন্তে কৌিিক ভबবেগব সংবক্ষণব চর্তটো कि?
The relation between angular momentum \vec{L} and the torque $\vec{\tau}$ is $\frac{d \vec{L}}{d t}=\vec{\tau}$. Then what is the condition for conservation of angular momentum?
(i) $\vec{L}=\vec{\tau}$
(ii) $\vec{L}=0$
(iii) $\vec{\tau}=0$ or (बा) $\frac{d \vec{L}}{d t}=0$
(iv) $\vec{\tau}=$ constant (纟্রুब्बক)
(e) সবল পর্यাবৃত্ত গতিব কণা এটাব সেই বিন্দুত বেগ ন্যূনতম হ’ব য’ত সবণ
The velocity of a particle executing SHM is minimum at a point where displacement is
(i) শূन्य

zero

(ii) গबিষ্ঠ
maximum
(iii) শূন্য আব গবিষ্ঠব মাজত midway between zero and maximum
(iv) একেবাহে পবিবর্তন לৈ থাকে continuously changing
(f) यদি সबল পর্যাবৃত্ত দোলকব বিস্তাব দুগুণ কबা হ’য়, তেন্তে ইয়াব পর্যায়কাল হ’ব
If the amplitude of a simple harmonic oscillator is doubled, then its time period
(i) দুগুণ
will be doubled
(ii) পূর্বব মানব आধা
will be half the previous value
(iii) পৃর্বব মানব চাবি গুণ
will be four times the previous value
(iv) একে থাকিব
will remain same
(g) কাল্পनिक বলব কাবণ হ'ল

The cause of fictitious force is
(i) দুটা বস্তুব মাজব ভেতিক ক্রিয়া physical interaction between two
(ii) ত্ববিত नোহোবা প্রসংগ প্রণালীব তুলनाত প্রসংগ প্রণাनीব ত্ববণ
acceleration of the frame of reference compared to a nonaccelerating frame
(iii) দুটা বলব মাজব ক্রিয়া
interaction between two forces
(iv) ত্ববিত প্রসংগ প্রণালীব তুলনাত প্রসংগ প্রণালীব ত্ববণ acceleration of the frame of reference compared frame of
accelerating frame to an
(h) $\vec{\omega}$ কৌিক বেগেবে ঘূবি থকা প্রসংগ প্রণাनी এটাত m ভবব কণা এটাব ওপবত ক্রিয়া কবা কবিज'नিচ বল হ’ব
Coriolis force acting on a particle of mass m in a frame rotating with angular velocity $\vec{\omega}$ is
(i) $-m \vec{\omega}(\vec{\omega} \times \vec{r})$
(ii) $-\frac{1}{2} m(\vec{\omega} \times \vec{r})$
(iii) $-2 m(\vec{\omega} \times \vec{r})$
(iv) $-\frac{1}{2} \vec{m} \vec{\omega}(\vec{\omega} \times \vec{r})$
(i) S^{\prime} প্রসংগ প্রণাनীটো S প্রসংগ প্রণাनी সাপেক্ষে ধনাত্মক x-অक্ষব দিশত গতি কবিছে। S^{\prime} ত বড এডাল Y^{\prime}-অक্ষব দিশত श্ছপन कबा रৈছে। বড ডান यদি S প্রসংগ প্রণাनीব পবা পর্যবেক্ষণ কবা হয়, তেন্তে দেখা যাব
S^{\prime} frame of reference moves along the positive x-direction with reference to frame of reference S. A rod is placed along Y^{\prime}-axis in S^{\prime}. If the rod is observed from the S frame, then it appears
(i) সংকুচিত হৈছে
contracted
(ii) দীঘन হৈহে elongated
(iii) অপबিবর্তিত रৈ থাকিব unchanged
(iv) ওপবब এটাও নহয়

None of the above
(j) ভবरीন কণাই ভबবেগ লাভ কবিব পাবে यেতিয়া কনাটেরে
Massless particle can have energy and momentum when the particle
(i) পোহবব বেগত গতি কবে moves with the speed of light
(ii) পোহবব বেগতকক বহ কম বেগত গতি কবে moves with the speed very less than the speed of light
(iii) পোহবব বেগতকৈ বেছি বেগত গতি কবে moves with the speed larger than the speed of light
(iv) बেগ শৃন্য
has zero velocity
2. তनব প্রশ্মमমृহব উত্তব দিয়া :

Answer the following questions :
 छश़ार दाध्या कबा।
What is Galilean transformation? Explain it by taking transform
(b)

24P/496
(c) জড়ত ভ্রামকব ভেতিক তাৎरর্य ব্যাখ্যা কবা।

State the physical significance of moment of inertia.
(d) অबমণ্ডিত কম্পন মানে কি বুজা?

What is damped vibration?

> অशবা / Or

অनूनाদब তীক্লত মানে কি?
What is sharpness of resonance?
(e) কবিज’निচ বन कि? कि অबस্ছত ইয়াব মাन গবিষ্ঠ হয়? What is Coriolis force? Under what condition is it maximum?

অथा / Or

বিষুব অঞ্চनত ঘৃন্ণীবতহ উৎপত্তি হেরা ఢেখা নাयाয়। किये ?
Cyclones are not found to occur on the equator. Why?
(f) पৈर्य্য সংকোচ্ন মানে कि বুজা?

What is length contraction?
(g) বিশশ आ<েক্किকতাবাদ্ স্বীকার্যকেইটা কি কি?

What are the postulates of special theory of relativity?

অथा / Or
आপপক্ষিকতাবাদ ভব-xক্তি সমতুন্যাত মান্ন কি বুজা?
What is mass-energy equivalence in relativity?
(h) Twin paradox घानে कि?

What is twin paradox?
(i) দেখুও্বা বে এডাन অक्ष সাপেক্ষে ঘৃবি থকা বস্তু এটাব গणिশক্তি E, ইয়াব জড়ত ভ্রামক, I ব आधा।
Show that the kinetic energy E of a body rotating about an axis is half of its moment of inertia, I.
(j) সবन পर्याবৃত্ত গতি (SHM)ব অबকनজীয় সমীকবণটো প্রত্शি कबा।

Deduce the differential equation of simple harmonic motion (SHM).
অথবা / Or

দেখুও্রা বে পর্যাবৃত্ত দোনকব গতি শক্তি $\frac{1}{2} m r^{2} \omega^{2}$
য’ত m र̌হহ দোনকব ভব

$$
r \text { হৈছে দোনকব বিস্তাব }
$$

आক ω रूহে দোनকব কৌিিক ভববেগ।
Show that the kinetic energy of a harmonic oscillator is $\frac{1}{2} m r^{2} \omega^{2}$
where m is the mass of the oscillator, r is the amplitude of the oscillator and ω is the angular frequency of the oscillator.
 কবিনে ইহँত অপবিবর্তनীয় হয় কিন্ধে বেগ নহয়। Show that length (or distance) and acceleration are invariant under Galilean transformation while velocity is not invariant.

 প্রকাশ কবিব পাবি।
What is conservative force? Show that conservative force can be expressed as a negative gradient of scalar potential function (i.e., potential energy).
5. এটা গোটা গোনকব ইয়াব এডাল ব্যাস সাপেক্ষে জড়ত ভ্রামক উলিওরা।
Determine the moment of inertia of a solid sphere about a diameter of the sphere.

जथবा / Or

 অक्ष সাপেক্ষে জড়ত ज্রামक निर्वয় कবा।
Determine the moment of inertia of a hollow cylinder and a solid cylinder about the axis of symmetry.
 বুজোরা অর্থ বুজাইছে)।
Establish the relation $Y=2 \eta(1+\sigma)$, where the symbols have their usual meanings.
7. এডাল কৈশিক নनीबে বৈ বোরা জুनীয়া পদার্থব কাবণে পয়’ছেনিব সমীকবনढটে প্রতিছ্ছ কবা।
Establish Poiseuille's equation for flow of a liquid through a capillary tube.
8. দেখুওরা যে সবन পর্যাবৃত্ত গতিব কণা এটাব তাৎক্ষণিক বেগ $\omega \sqrt{a^{2}-y^{2}}$ आ< তাৎক্ষণিক ত্ববণ $\omega^{2} y$, (চিহ্সসমূহে সচবাচব অর্থ প্রকাশ কবিছে)।

Show that for a particle executing simple harmonic motion, the instantaneous velocity is $\omega \sqrt{a^{2}-y^{2}}$ and instantaneous acceleration is $\omega^{2} y$, (symbols have their usual meanings).

> অথবা / Or

সবল পর্যাবৃত্ত গতিব কণা এটাব সমীকবণ হ'ল

$$
y=12 \sin \left(\frac{2 \pi t}{10}+\frac{\pi}{4}\right)
$$

ইয়াত y ছেঃমিঃ ত, t চেকেণুত आছে। এতিয়া (i) বিস্তাব, (ii) ক্्পनाংক, (iii) আদি দশা, (iv) $t=1.25$ চেকেণুত সবণ, (v) $t=2 \cdot 5$ চেকেণুত বেগ আবু (vi) $t=5$ চেকেণুত ত্ববণ গণনা কবা।

The equation of motion of a particle executing SHM is given by

$$
y=12 \sin \left(\frac{2 \pi t}{10}+\frac{\pi}{4}\right)
$$

here y is in cm, t is in second. Calculate (i) amplitude, (ii) frequency, (iii) initial phase, (iv) displacement at $t=1.25$ second,
(v) velocity at $t=2.5$ second and 24P/496

(11)

9. $\vec{F}_{0}=-2 m(\vec{\omega} \times \vec{v})-m \vec{\omega}(\vec{\omega} \times \vec{r})$ সমীকবণটো প্রতিস্शা কबা, য’ত \vec{F}_{0} কাল্পनिক বল, $\vec{\omega}$ ঘূর্ণীয়মান নিকায়টোব কোণিক বেগ, m ভबব কণা এটাব বেগ \vec{v}, \vec{r} কণাটোব স্থানাং ভেক্টব।

Derive the relation

$$
\vec{F}_{0}=-2 m(\vec{\omega} \times \vec{v})-m \vec{\omega}(\vec{\omega} \times \vec{r})
$$

where \vec{F}_{0} is fictitious force, $\vec{\omega}$ angular velocity of rotating system, \vec{v} velocity of a particle of mass m, \vec{r} position vector of the particle.

অथবা/Or

(a) দেখুওবা বে অজড় প্রসংগ প্রণাनी এটাত কণা এটা ওপবত মুঠ পবিলক্ষিত বन প্রকৃত বन आক কাল্পনিক বলব যোগফলব সমান।
Show that the total observed force on a particle in a non-inertial frame is equal to the sum of actual force and fictitious force.
(b) কবিঅ'निচ বলब প্রয়োগব বিষয়ে आলোচনা কबা।

Discuss the applications of Coriolis force.
10. (a) মাইকেল্চন্-মর্बেब পबীক্ষাব ফলাফলসমূহ আनোচনা কबा।
Discuss the results of Michelson-Morley experiment.

(12)

(b) দৈर্ঘ্য সংকোচনব ধাবণাটো ব্যাখ্যা কবা। 3 Explain the term 'length contraction'.
11. (a) আপেक্ষিক ভবব লগত বেগব সম্পক্কটো झাপন কবা। Derive an expression for relativistic variation of mass with velocity.
(b) आপেক্ষিততাবাদত ড'পनाब পবিঘটনাব প্রকাশবাশিটো
निथि উनिওব্বা।
(b) आপেক্ষিকতাবাদত ড'পनाব পবিঘটনাব প্রকাশবাশিটো
লিথি উनिওবা। Write an expression for relativistic
Doppler effect. Write an expression for relativistic
Doppler effect. $\star \star \star$

