Total No. of Printed Pages-8

1 SEM FYUGP MTHC1

2023
(December)

MATHEMATICS
 (Core)

Paper : MTHC1

(Calculus and Classical Algebra)
$\frac{\text { Full Marks : } 80}{\text { Pass Marks : } 24}$
Time: 3 hours
The figures in the margin indicate full marks for the questions

1. (a) यदि (If)

$$
\begin{aligned}
& \cos \alpha+\cos \beta+\cos \gamma=0=\sin \alpha+\sin \beta+\sin \gamma \\
& \text { তেন্大ে Cদখुওता वে (then show that) } \\
& \sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma \\
& \quad=\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\frac{3}{2}
\end{aligned}
$$

आब (and)
$\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma$ $=\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=0$

(2)

অথবা / Or

দেখুওব্রা यে (Show that)
$\sinh x-\sinh y=2 \cosh \frac{1}{2}(x+y) \sinh \frac{1}{2}(x-y)$
$\cosh x+\cosh y=2 \cosh \frac{1}{2}(x+y) \cosh \frac{1}{2}(x-y)$
(b) $\sin \alpha$ आ< $\cos \alpha$ क α ব উচ্চ সূচাংকব পদত বিস্তৃতি দিয়া।
Expand $\sin \alpha$ and $\cos \alpha$ in ascending powers of α.

অथবা / Or

দেখুওর্যা यে (Show that), यদি (if)

$$
u=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)
$$

তেন্তে (then)

$$
\text { (i) } \sinh u=\tan \theta
$$

(ii) $\tanh u=\sin \theta$
(c) দেখুণ্রা यে, यদি $n \in \mathbb{N}$ आব

Show that, if $n \in \mathbb{N}$, and

$$
(1+x)^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}
$$

তেন্তে (then)

$$
c_{0}+c_{4}+c_{8}+\cdots=2^{n-2}+2^{\frac{n}{2}-1} \cos \frac{n \pi}{4}
$$

(3)

অথবা / Or

দেখুওবা यে (Show that)
$(a+i b)^{\frac{m}{n}}+(a-i b)^{\frac{m}{n}}=2\left(a^{2}+b^{2}\right)^{\frac{m}{2 n}} \cos \left(\frac{m}{n} \tan ^{-1} \frac{b}{a}\right)$
2. (a) লিব্নিজব সূত্রটো উল্লেখ কবা।

State Leibnitz theorem.
(b) তलब यি কোনো এটাব y_{n} निর্ণয় কबा :

Find y_{n} of any one of the following :
(i) $y=e^{a x} \sin (b x+c)$
(ii) $y=\tan ^{-1} \frac{x}{a}$
(c) यमि (If) $y=\left(x^{2}-1\right)^{n}$, তেন্তে দেখুওব্রা যে (then show that)

$$
\begin{equation*}
\left(x^{2}-1\right) y_{n+2}+2 x y_{n+1}-n(n+1) y_{n}=0 \tag{3}
\end{equation*}
$$

(d) ল’পिটেলব निয়ম প্রয়োগ কবি यि কোনো এটাব মান निर्ণয় কबा :
Use L'Hospital's rule to evaluate any one :
(i) $\lim _{x \rightarrow 0} \frac{\log _{e}\left(1-x^{2}\right)}{\log _{e} \cos x}$
(ii) $\lim _{x \rightarrow 0} \frac{e^{x}+\log _{e}(1-x)-1}{\tan x-x}$
(e) প্রথম অবকনজ পীীক্ষাব দ্বাবা তলব ফ্नনটোব চবমমান আাক সংকট বিन্দू, यদি থাকে, নির্ণয় কबा :

$$
f(x)=x^{3}
$$

Use first derivative test to detect the extrema and critical point of the function $f(x)=x^{3}$, if they exist.
3. (a) यदि (If)

$$
I_{n}=\int_{0}^{\pi / 2} \sin ^{n} x d x ; n \in \mathbb{N}
$$

তেন্তে দেখুওবা যে (then show that)
$I_{n}=\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdots \frac{2}{3}$
यেতিয্যা (when) n ₹'न অयूश्प (n is odd) आাক (and)
$I_{n}=\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdots \frac{1}{2} \cdot \frac{\pi}{2}$
यেতিয়া (when) n ₹'न यूझ्य (n is even).
অथবা/Or
দেशুও্বা यে (Show that)

$$
\int_{0}^{a} x^{3}\left(2 a x-x^{2}\right)^{3 / 2} d x=a^{7}\left(\frac{9 \pi}{32}-\frac{23}{35}\right)
$$

24P/493
(b) (i) বেক্টিফিকেশনব সংষ্ঞা দিয়্যা। Define rectification.
(ii) निम्মেক্ত বক্রব $\theta=0$ ब পবा $\theta=\pi$ नৈকে দীঘ উनिওরা :
Find the length of the curve measured from $\theta=0$ to $\theta=\pi$:

$$
\begin{gathered}
x=e^{\theta}\left(\sin \frac{\theta}{2}+2 \cos \frac{\theta}{2}\right) \\
y=e^{\theta}\left(\cos \frac{\theta}{2}-2 \sin \frac{\theta}{2}\right) \\
\text { অथবा } / O r
\end{gathered}
$$

দেখুওবা यে
Show that the length of an arc of the curve

$$
\begin{aligned}
& x \sin t+y \cos t=f^{\prime}(t) \\
& x \cos t-y \sin t=f^{\prime \prime}(t)
\end{aligned}
$$

বক্রটেোব এটা চাপব দীঘ হ’ব
is

$$
s=f(t)+f^{\prime \prime}(t)+k
$$

য’ত k এটা অनুকলन ঞ্রেब্রক (where k is a constant of integration)।
(c) তলব এষ্ট্রইডটোব आবর্তনব ফলত উৎপত্তি হোবা গোটা বস্তুটোব আয়তন আকৃ পৃষ্ঠতাগব কালি নির্ণয় কবা :
Find the volume and surface area of the solid generated by revolving the astroid :

$$
x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}
$$

24P/493

(6)

অথবা / Or

 হোরা গোট বস্ত্তটোব आয়তন আাক পৃষ্ঠতাগব কাoি নির্ণ্য कबा :

Find the volume and surface area of the solid generated by revolving the cycloid about its base :

$$
x=a(t+\sin t) ; y=a(1+\cos t)
$$

4. (a) (i) খानी ठोई পृषণ कबा :
```
এটা ফলन প্রতিলোমীয় হ'ব यদি आ< यদিহে
```

\qquad

``` 1
```

Fill up the blank :
A map is invertible if and only if it is \qquad -.
(ii) দেখুও্রা यে यদি $f: A \rightarrow B$ आ<ু $g: B \rightarrow C$ এক-ঐকিকী আচ্ছাদক, তেন্তে $g f: A \rightarrow C$ ও এক-ঐকিকী আচ্ছাদক হ’ব।
Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-one-onto, then so is $g f: A \rightarrow C$.
(b) ইউক্লিডব এল্গ’বিথম উদ্ধৃতি দি প্রমাণ কবা।

State and prove Euclid's algorithm.
(c) यदि (If), $a \equiv b(\bmod n)$, তেন্তে দেখুওর্মা यে (then show that)

$$
\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)
$$

5. (a) এটা বৈখিক সমীকবণ প্রণালীব সমাধানব সংষ্ঞা দিয়া। 1 Define solution of a linear system of equations.
(b) এটাতকৈ বেছি মৌল থকা এটা বৈथिকভার্রে নির্ভবশীল डেক্টবব সংহতিব উদাহবণ দিয়া।
Give an example of a set of linearly dependent vectors containing more than one element.
(c) এটা মৌলকক্ষব এশ্বিলন আকাবব সং区্ঞা দিয়া।

Define Echelon form of a matrix.
(d) এটা মৌলকক্ষব यি কোনো দুটो প্রাথমিক শাবী সংক্রিয়াব উদ্ধৃতি দিয়া।
State any two elementary row operations permissible on a matrix.
(e) তলब মৌলকক্ষক এশ্বিলন आকাবলৈ নিয়া :

Reduce the following matrix into echelon form :

$$
\left[\begin{array}{cccc}
1 & 3 & 4 & 3 \\
3 & 9 & 12 & 3 \\
1 & 3 & 4 & 1
\end{array}\right]
$$

(f) তলब মৌলকক্ষটো RREFলৈ সলनि কবা:

Reduce the following matrix into row reduced echelon form (RREF) :

$$
\left[\begin{array}{rrrr}
0 & 1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

181

 Show that the following vectors are linearly dependent :

$$
(1,1,2),(1,2,5),(5,3,4)
$$

* *

