Total No. of Printed Pages-8

2 SEM TDC ECOH (CBCS) C 4

2023
 (May/June)

 ECONOMICS

 ECONOMICS
 (Core)

Paper: C-4
(Mathematical Methods in Economics-II)

$$
\frac{\text { Full Marks : } 80}{\text { Pass Marks : } 32}
$$

Time : 3 hours
The figures in the margin indicate full marks for the questions

1. Choose the correct answer/Answer the following :
(a) The time path of price is convergent when
(i) slope of supply curve is steeper than the demand curve
(ii) slope of demand curve is greater than the slope of supply curve
(iii) slope of demand curve is equal to slope of supply curve
(iv) None of the above
(b) Select the correct statement.
(i) The value of a determinant changes if the rows and columns are interchanged.
(ii) If two rows of a determinant are identical, the value of the determinant will be non-zero.
(iii) If any two rows are interchanged, the sign of the determinant will alter, but numerical value will remain same.
(iv) All of the above
(c) If $|A| \neq 0$, then A is
(i) zero matrix
(ii) singular matrix
(iii) non-singular matrix
(iv) diagonal matrix
(d) If the total cost function is

$$
C=2 Q^{3}-15 Q^{2}+30 Q+16
$$

then the AVC will be
(i) $6 Q^{2}-30 Q+30$
(ii) $2 Q^{2}-15 Q+30+\frac{16}{Q}$
(iii) $2 Q^{2}-15 Q+30$
(iv) 16
(e) The profit maximization in multiproduct firm, producing two products, requires that
(i) $\left|H_{1}\right|>0$ and $\left|H_{2}\right|<0$
(ii) $\left|H_{1}\right|>0$ and $\left|H_{2}\right|>0$
(iii) $\left|H_{1}\right|<0$ and $\left|H_{2}\right|=0$
(iv) $\left|H_{1}\right|<0$ and $\left|H_{2}\right|>0$
(f) Define homogeneous production function.
(g) The cross elasticity of demand in case of complementary goods is
(i) positive
(ii) negative
(iii) independent
(iv) zero
(h) The least cost combination of inputs requires
(i) slope of indifference curve = slope of budget line
(ii) slope of isoquant = slope of isocost curve
(iii) the isoquant is convex to the origin
(iv) Both (ii) and (iii)
2. Answer any four of the following : $4 \times 4=16$
(a) Write a note on economic application of first-order difference equation.
(b) Explain briefly the inverse of a matrix and its properties.
(c) Prove that for any scalar λ,

$$
\lambda(A+B)=\lambda A+\lambda B
$$

(d) What is meant by Constant Elasticity of Substitution (CES) production function? Prove that CES production function is a linear homogeneous function.
(e) The marginal revenue and marginal cost functions of a firm are given as

$$
\begin{aligned}
& \mathrm{MR}=25-\frac{1}{2} Q \\
& \mathrm{MC}=0 \cdot 2 Q^{2}-\frac{1}{3} Q+2
\end{aligned}
$$

and total fixed cost is 10 . Find out total profit when the firm produces and sells 10 units of output.
3. (a) (i) Solve the difference equation $Y_{t+1}-Y_{t}=10$ and $Y_{0}=5$.
(ii) In a Cobweb model

$$
\begin{aligned}
& Q_{d t}=a-b P_{t} \quad(a, b>0) \\
& Q_{s t}=-c+d P_{t-1} \quad(c, d>0) \\
& Q_{d t}=Q_{s t}
\end{aligned}
$$

Obtain the time path P_{t} and analyze the condition for its convergence. 7
(b) (i) Given, slope of demand curve $|\alpha|=3$ and slope of supply curve $|\beta|=4$. Determine whether equilibrium is stable.
(ii) Given the demand and supply function as

$$
\begin{aligned}
& 3 X_{d t}=20-P_{t} \\
& 3 X_{s t}=-20+7 P_{t-1}
\end{aligned}
$$

Find the equilibrium price, the time path and determine, whether or not the equilibrium is stable.
(iii) Solve the following difference equation by iterative method :

$$
Y_{t+1}-Y_{t}=5 \text { and } Y_{0}=10
$$

4. (a) (i) Define rank of a matrix.
(ii) Evaluate the following determinant :
(iii) Solve the following national income model using Crammer's rule :

$$
\left|\begin{array}{ccc}
1 & 1 & 3 \\
2 & -2 & 1 \\
1 & 0 & -2
\end{array}\right|
$$

P23/1115
(Turn Over)

$$
\begin{aligned}
& Y=C+I_{0}+G_{0} \\
& C=\alpha+\beta(Y-T) \quad(\alpha>0,0<\beta<1) \\
& T=\gamma+\delta Y \quad(\gamma>0 ; 0<\delta<1)
\end{aligned}
$$

10nO unL
7ndqno jo
 quịd（min）pue fifoId unuḷew（n） ＇7ndłno su！z！u！xew fyoad（i）pu！H

$$
\begin{aligned}
00 I+b 0 I+\tau^{b} b \tau-\varepsilon b & =0 \\
\tau^{b-b} 0 \varepsilon & =y
\end{aligned}
$$

 ［e707 8u！̣MOIIOf 247 sey 7sifodouou V

7！ford unumxew
$\mathrm{OI}=\varepsilon+L$ pure fndqno suḷ！u！xew fyoid pu！s

$$
\begin{aligned}
& \tau \partial \vdash-9 I={ }^{\tau} \mathrm{dV} \\
& \\
& \mathrm{I} \partial \varepsilon-\tau \varepsilon={ }^{\mathrm{I}} \mathrm{~d} V
\end{aligned}
$$

$$
0 I+{ }^{z} \partial{ }^{\tau} \partial O Z+{ }_{z}^{\tau} \partial \frac{t}{I}+{ }_{z}^{\tau} \partial=O L
$$

 słonpoid omf soonpoid fsilodouou V
（D）$\cdot 9$

$$
I>g>0: 0<0 \quad{ }_{\mathrm{g}} \mathrm{~g} \partial^{x}=(\Xi) n=n
$$

9
－OI URYł SSəI

 ${ }^{\prime}{ }^{2} b s \cdot 0+b z-00 I=0 L K q$ นəム！8 s！uoṭounf e fo 7soo โełoł əપł II（ṇ）
（ рапищиоว ）

$$
\begin{aligned}
& \frac{\hbar \varrho}{z \varrho}
\end{aligned}
$$

乙
sejono Uotioung uomponpoid

suosera quełaodur！omq uo！̣uวN（？？
ZI $=0 I+$ U Uomount uoţonpoid serßno
－qq0う jo sə！みədoId әцम ənoId
pure ə⿰丬士S roṃoung uoṭonpoid
SHつ pure uomoung uomonpoid

$$
\begin{aligned}
& 8 \varepsilon=\varepsilon_{x} \varepsilon+I_{x} \\
& \varepsilon \triangleright=\tau_{x} \varepsilon+I_{x 乙} \\
& 0 \vdash=\varepsilon_{x}-\tau_{x 乙}+{ }_{x}{ }_{x \downarrow}
\end{aligned}
$$

9

> : UO!̣SIənU!

$$
\left[\begin{array}{ccc}
\tau & 0 & \varepsilon- \\
\tau & I & \succ \\
s- & 0 & 乙
\end{array}\right]=V
$$

$\downarrow \quad: V$ x！̣yeux

(8)

7. (a) (i) Using Lagrange multiplication method, find the extreme value of the function

$$
Y=x_{1}^{2}+x_{1} x_{2}+\frac{3}{2} x_{2}^{2}
$$

subject to $x_{1}+2 x_{2}=14$.
(ii) A consumer has a utility function $u=x y$, where x and y are the goods purchased and his budget constraint is given by $B=x P_{x}+y P_{y}$. Find out demand functions for x and y.

Or
(b) Cost and production function of a firm that wants to produce 64 units at minimum cost are respectively $C=2 L+4 K$ and $Q=8 L^{1 / 4} K^{1 / 2}$. Find the quantity of K and L.

