Total No. of Printed Pages-7

6 SEM TDC DEE MPH (CBCS) 2 (H)

2023
(May/June)

MATHEMATICS

(Discipline Specific Elective)
(For Honours)
Paper: DSE-2
(Linear Programming)
Full Marks: 80
Pass Marks: 32
Time: 3 hours
The figures in the margin indicate full marks for the questions
(a) Define $\begin{aligned} & \text { solution. }\end{aligned}$
(b) Write about decision variable.
(c) Define slack variable.
(d) Write the standard form of primal in
(d) Write the standard form
duality.
(Turn Over)

1. Answer the following questions:
(a) degenerate basic feasible
$\mathrm{P}_{23 / 819}$
(e) Define symmetric primal dual problem.
(f) State the rim condition of
(g) Define saddle point in a game theory.
(h) What is fair game in a game theory?
2. Answer any two from the following : $2 \times 2=4$
(a) Write the mathematical formulation of transportation problem.
(b) Explain briefly the basic solution of linear programming problem.
(c) Describe general rule of dominance
property of game theory.
3. Answer the following questions :
(a) Write the rule of construction of dual
from primal.
(b) Write the characteristic of standard form of general linear of standard
problem.

P23/819
(c) Find the dual :

$$
\operatorname{Max} Z=4 x_{1}-3 x_{2}+2 x_{3}
$$

subject to

$$
\begin{array}{r}
x_{1}-7 x_{2}+3 x_{3} \leq 6 \\
-5 x_{2}+3 x_{3} \geq 8 \\
2 x_{1}-4 x_{2}+5 x_{3}=7
\end{array}
$$

$x_{1}, x_{3} \geq 0, x_{2}$ is unrestricted in sign
(d) In an assignment problem, if we add (or subtract) a constant to every element of a row (or column) of the cost matrix $\left[c_{i j}\right]$, then show that an assignment plan that minimizes the total cost for new cost matrix also minimizes the total cost for the original cost matrix.
(e) Find the range of the values of p and q which will render the entry $(2,2)$, a saddle point for the game :

	Player B			
	B_{1}	B_{2}	B_{3}	
Player A	2	4	5	
		7	q	
	10		6	

4. (a) Prove that dual of the dual is primal itself.

Or

If x^{*} and w^{*} be any two feasible solutions of the primal, $\operatorname{Max} Z_{x}=c x$, subject to $A x \leq b, x \geq 0$ and corresponding dual, Min $Z_{w}=b^{\prime} w$, subject to $A^{\prime} w \geq c^{\prime}, w \geq 0$ respectively and $c x^{*}=b^{\prime} w^{*}$, then x^{*} and w^{*} are optimal feasible solutions of the primal and dual respectively. Prove it.
(b) Solve the pay-off matrix with respect to player A by using dominance property :

		Player B				
	1	1	2	3	4	5
Player. A	4	6	5	10	6	
	2	7	8	5	9	10
	3	8	9	11	10	9
	4	6	4	10	6	4

5. Answer any one of the following :
(a) Find the optimal assignment of the corresponding assignment cost from the following cost matrix :

	A	B	C	D
E				
I	9	8	7	6
4				
II	5	7	5	6
III	8	7	6	3
IV	8	5	4	3
V	6	7	4	9
	6	8	5	

51

(b) Find the optimal assignment profit from the following profit matrix :

	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}
O_{1}	2	4	3	5	4
O_{2}	7	4	6	8	4
O_{3}	2	9	8	10	4
O_{4}	8	6	12	7	4
O_{5}	2	8	5	8	8

6. Answer any two of the following:
(a) Solve by Big-M method :

$$
\operatorname{Max} Z=-2 x_{1}-x_{2}
$$

subject to

$$
\begin{aligned}
3 x_{1}+x_{2} & =3 \\
4 x_{1}+3 x_{2} & \geq 6 \\
x_{1}+2 x_{2} & \leq 4 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

(b) Solve :

$$
\operatorname{Min} Z=x_{1}-3 x_{2}+2 x_{3}
$$

subject to

$$
\text { to } \begin{aligned}
& 3 x_{1}-x_{2}+2 x_{3} \leq 7 \\
&-2 x_{1}+4 x_{2} \leq 12 \\
&-4 x_{1}+3 x_{2}+8 x_{3} \leq 10 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

(Turn Over)
(c) Solve by two-phase method:

$$
\operatorname{Min} Z=\frac{15}{2} x_{1}-3 x_{2}
$$

subject to

$$
\begin{aligned}
3 x_{1}-x_{2}-x_{3} & \geq 3 \\
x_{1}-x_{2}+x_{3} & \geq 2 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

7. Answer any one of the following :
(a) Determine the initial basic feasible solution to the following transportation problem by least cost method and then find the optimal solution :

	D_{1}	D_{2}	D_{3}	D_{4}	a_{i}
O_{1}	5	3	6	2	19
O_{2}	4	7	9	1	37
O_{3}	3	4	7	5	34
b_{j}	16	18	31	25	

where O_{i} and D_{j} denote the i th origin and j th destination respectively.
(b) Find the initial basic feasible solution using VAM and find the optimal
solution :

	A	B	C	D	a_{i}
S_{1}	8	9	6	3	18
S_{2}	6	11	5	10	20
S_{3}	3	8	7	9	18
b_{j}	15	16	12	13	

P23/819
8. Answer any one of the following :
(a) Obtain the optimal strategies of each player from the pay-off matrix :

		Player B			
		I	II	III	IV
Player A	3	2	4	0	
	II	3	4	2	4
	III	4	2	4	6
	IV	0	4	0	8

(b) Player A can choose his strategies from Player A can choose his $\begin{aligned} & \text { onde player } B \text { can } \\ & A_{1}, A_{2} \text { and } A_{3} \text { only while of }\end{aligned}=$ The rule ${ }^{2}, B_{2}$ only. choose from B_{1}, B_{2} only. The rule of choose from B_{1}, B_{2} only
game states that the payment be belection made in accordance with the selection of strategies :

made in accordar\|
of strategies :
Strategy pair selected Payment to be made $A_{1} B_{1}$ A to B ₹ 1 $A_{1} B_{2}$ B to $A ₹ 6$ $A_{2} B_{1}$ B to $A ₹ 3$ $A_{2} B_{2}$ B to $A ₹ 4$ $A_{3} B_{1}$ A to $B ₹ 2$ $A_{3} B_{2}$ A to $B ₹ 6$
Find the pay-off matrix and optimal

strategies of each
 Player B

\[

\]

6 -700/819 6 SEM TDC DSE M

