Total No. of Printed Pages-7

6 SEM TDC MTMH (CBCS) C 14

2023

(May/June)

MATHEMATICS
(Core)
Paper: C-14

(Ring Theory and Linear Algebra-II)

$\frac{\text { Full Marks : } 80}{\text { Pass Marks : } 32}$

Time: 3 hours
The figures in the margin indicate full marks for the questions

1. Answer any three from the following : $5 \times 3=15$
(a) Prove that a ring R is a commutative ring with unity if and only if the corresponding polynomial ring $R[x]$ is commutative with unity.
(b) If F is a field, then prove that the polynomial ring $F[x]$ is not a field.

$2)$

(c) Write about irreducibility of a polynomial. Test the irreducibility of the following polynomials :
(i) $f(x)=3 x^{5}+15 x^{4}-20 x^{3}+10 x+20$; over Q
(ii) $f(x)=21 x^{3}-3 x^{2}+2 x+9$, over Z_{2}
(d) Define principal ideal domain and prove that in a principal ideal domain, an element is an irreducible iff it is prime.
2. Answer any three of the following :
(a) Define unique factorization domain (UFD) and prove that every field ${ }_{1}+4{ }^{45}$ unique factorization domain.
(b) Prove that the ring of Gaussian integer $Z[i]=\{a+i b \mid a, b \in Z\}$ is Euclidean domain.
(c) Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in Z[x]$. If there is a prime such that $p \nmid a_{n}$, $p\left|a_{n-1}, \cdots, p\right| a_{0}$ and $p^{2}\left\{a_{0}\right.$, then prove that $f(x)$ is irreducible over Q.

14)

(d) Let V be a finite dimensional vector space over the field F and W be a subspace of V. Then prove that

$$
\operatorname{dim} W+\operatorname{dim} W^{\circ}=\operatorname{dim} V
$$

4. (a) Let $T: R^{2} \rightarrow R^{2}$ be a linear operator defined by

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Then find all the T-invariant subspace of $R^{2}(R)$.
(b) Let T be a linear operator on R^{3} which is represented in the standard basis by the matrix

$$
\left[\begin{array}{rrr}
-9 & 4 & 4 \\
-8 & 3 & 4 \\
-16 & 8 & 7
\end{array}\right]
$$

(5)

Or

If T is a linear operator on a vector space V and W is any subspace of V, then prove that $T(W)$ is a subspace of V. Also show that W is invariant under T iff $T(W) \subseteq W$.
5. (a) If V is inner product space, then for any vectors $\alpha, \beta \in V$ and any scalar c, prove that-
(i) $\|\alpha\|>0$ for $\alpha \neq 0$
(ii) $\|c \alpha\|=|c|| | \alpha| |$
(iii) $|(\alpha \mid \beta)| \leq\|\alpha\|\|\beta\|$
(b) Apply Gram-Schmidt process to the vectors $\quad \beta_{1}=(1,0,1), \quad \beta_{2}=(1,0,-1)$, $\beta_{3}=(0,3,4)$ to obtain an orthonormal basis for $V_{3}(R)$ with the standard inner product.
(c) Let W be any subspace of a finite dimensional inner product space V and let E be the orthogonal projection of V on W. Prove that $V=W+W^{\perp}$, where W^{\perp} is the null space of E.

(6)

Or
If $B=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right\}$ is any finite orthonormal set in an inner product space V and if β is any vector in V, then prove that

$$
\sum_{i=1}^{m}\left|\left(\beta, \alpha_{i}\right)\right|^{2} \leq||\beta||^{2}
$$

6. (a) Define orthogonal set. If α and β are orthogonal unit vectors, then write the distance between them. $\quad 1+1=2$
(b) Answer any two of the following : $4 \times 2=8$
(i) Let T be a linear operator on R^{2}, defined by $T(x, y)=(x+2 y, x-y)$. product is standard one.
(ii) Let V be a finite dimensional inner product space and limensional inner
$B=\left\{\alpha_{1}, \alpha_{2}, \ldots, a_{n}\right\}$ let $B=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ and let an ordered
orthonormal orthonormal basis for V. Let T be
a linear operdere $A=\left[a_{i j}\right]_{n \times n}$ ope bether on V. Let respect to ordered matrix of T with prove that $a_{i j}=\left(T \alpha_{j}, \alpha_{i}\right)$. B, then
(iii) Let $S=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right\}$ be an orthogonal set of non-zero vectors in an inner product space V. If a vector β in V is in the linear span of S, then show that

$$
\beta=\sum_{k=1}^{m} \frac{\left(\beta, \alpha_{k}\right)}{\left\|\alpha_{k}\right\|^{2}} \alpha_{k}
$$

