Total No. of Printed Pages-7

6 SEM TDC MTMH (CBCS) C 13

2023

(May/June)

MATHEMATICS

(Core)

Paper : C-13

(Metric Spaces and Complex Analysis)

Full Marks : 80 Pass Marks : 32

Time : 3 hours

The figures in the margin indicate full marks for the questions

1.	(a)	Real line is a metric space. State true or false.	1
	(b)	Write when a metric space is called complete.	1
	(c)	Define usual metric on R.	2
	(d)	Define Cauchy sequence in a metric space.	2

P23/761

(Turn Over)

MATHEMATICS

			E	<u>999</u>			
		(2)				(3)	
	(e) .	Let X be a metric space. Show that any union of open sets in X is open.	4	((c)	Define uniform continuity in metric spaces. 1	
		Or		((đ)	Define connected sets in a metric space. 2	
	. •	Show that every convergent sequence in a metric space (X, d) is a Cauchy sequence.	K	l	(e)	Answer any <i>two</i> questions from the following : 5×2=10	
	())	Let X be a metric space. Show that a subset F of X is closed if and only if complement F' is open.	5			(i) Let (X, d) and (Y, r) be metric spaces and $f: X \to Y$ be a function. Then prove that f is continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y.	
	(g)	Or In a metric space (X, d) , show that each closed sphere is a closed set. Let (X, d) be a metric space and $A \subset X$. Then show that interior of A is an open set.	5			(ii) Let (X, d) and (Y, r) be metric spaces and $f: X \to Y$ be a uniformly continuous function. If $\{x_n\}$ is a Cauchy sequence in X, then show that $\{f(x_n)\}$ is a Cauchy sequence in Y.	
		Or Let (X, d) be a metric space and $Y \subset X$. Then show that Y is separable if X is separable.				(iii) Let (X, d) be a compact metric space. Then show that a closed subset of X is compact.	
2.		-oparableoparable if X is	ſ	3.	(a)	Write the condition when the complex numbers (a, b) and (c, d) are equal.	
		Define an identity function in a metric			(b)		
	(b)	Write one example of homeomorphic spaces.	1			n vertices of a regular polygon. Write where the polygon is inscribed.	
P23/							
		(Continue	d)	· P23/	761	(Turn Over)	

(c) Write the necessary and sufficient condition that the complex numbers represented by z_1 and z_2 become parallel.

- (d) Find the limit of the function f(z) as $z \rightarrow i$ defined by
 - $f(z) = \begin{cases} z^2, \ z \neq i \\ 0, \ z = i \end{cases}$

1

3

5

Write the equation $(x-3)^2 + y^2 = 9$ in terms of conjugate coordinates.

(e) Show that $\frac{d\bar{z}}{dz}$ does not exist anywhere. 4

(f)

Prove that $f(z) = \begin{cases} z^2, & z \neq z_0 \\ 0, & z = z_0 \end{cases}$, where $z_0 \neq 0$ is discontinuous at $z = z_0$.

Find the Cauchy-Riemann equations for an analytic function f(z) = u + iv, where z = x + iy.

Or Find the equation of the circle having the line joining z_1 and z_2 as diameter. P23/761

- 4. (a) Write the point at which the function $f(z) = \frac{1+z}{1-z}$ is not analytic. 1
 - (b) Define singularity of a function. 2
 - (c) Write the statement of Cauchy's integral formula.
 - (d) Prove the equivalence of
 - $\frac{\partial}{\partial x} = \frac{\partial}{\partial z} + \frac{\partial}{\partial \overline{z}}$ 3

2

4

1

1

(e) Find the analytic function f(z) = u + iv, where $u = e^{x}(x\cos y - y\sin y)$.

Or

Find the value of the integral $\int \frac{dz}{z-a}$ round a circle whose equation is |z-a|=r.

- 5. (a) Define radius of convergence.
 - (b) Write the necessary and sufficient condition that $\sum_{n=1}^{\infty} (a_n + ib_n)$ converges, where a_n and b_n are real.

P23/761

- Define a power series. (C)
- State and prove the fundamental (d) theorem of algebra.

2

6

1

1

(Continued)

- Or Expand $f(z) = \log(1 + z)$ in a Taylor's series about z=0.
- **6.** (a) Let R be the radius of convergence of the

$\sum_{n=0}^{\infty} a_n z^n$

Then write the radius of convergence of

 $\sum_{n=0}^{\infty} n a_n z^{n-1}$

Choose the correct answer from the **(b)** An absolutely convergent series is

- (i) divergent
- (ü) convergent
- (iii) oscillatory

(iv) conditionally convergent P23/761

7

(c) State and prove Laurent's theorem.

Or

Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent series valid for 1 < |z| < 3.

6

 $\star \star \star$

P23-2000/761

6 SEM TDC MTMH (CBCS) C 13