Total No. of Printed Pages-7
6 SEM TDC MTMH (CBCS) C 13

> 2023
> (May/June)

MATHEMATICS
(Core)

Paper : C-13
 (Metric Spaces and Complex Analysis)

Full Marks: 80
Pass Marks : 32
Time : 3 hours
The figures in the margin indicate full marks for the questions

1. (a) Real line is a metric space. State true or false.
(b) Write when a metric space is called
complete.
(c) Define usual metric on R. 2
(d) Define Cauchy sequence in a metric
space.

(3)

(e) Let X be a metric space. Show that any union of open sets in X is open.

Or
Show that every convergent sequence in a metric space (X, α) is a Cauchy sequence.
(f) Let X be a metric space. Show that a subset F of X is closed if and only if complement F^{\prime} is open.

Or
In a metric space (X, d), show that each closed sphere is a closed set.
(g) Let (X, d) be a metric space and $A \subset X$. Then show that interior of A is an open
set.

Or

Let (X, d) be a metric space and $Y \subset X$. Then show that Y is separable if X is
separable.
2. (a) Define an identity function in a metric space. (b) Write one example of homeomorphic
spaces.
(c) Define uniform continuity in metric spaces.
(d) Define connected sets in a metric space. 2
(e) Answer any two questions from the following : $\quad 5 \times 2=10$
(i) Let (X, d) and (Y, r) be metric spaces and $f: X \rightarrow Y$ be a function. Then prove that f is continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y.
(ii) Let (X, d) and (Y, r) be metric spaces and $f: X \rightarrow Y$ be a uniformly continuous function. If $\left\{x_{n}\right\}$ is a Cauchy sequence in X, then show that $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence in Y.
(iii) Let (X, d) be a compact metric space. Then show that a closed subset of X is compact.
3. (a) Write the condition when the complex numbers (a, b) and (c, a) are equal.
(b) The nth roots of unity represents the n vertices of a regular polygon. Write where the polygon is inscribed.
(c) Write the necessary and sufficient condition that the complex numbers represented by z_{1} and z_{2} become
parallel. parallel.
(d) Find the limit of the function $f(z)$ as $z \rightarrow i$ defined by

$$
f(z)=\left\{\begin{array}{cc}
z^{2}, & z \neq i \\
0, & z=i
\end{array}\right.
$$

Or.
Write the equation $(x-3)^{2}+y^{2}=9$ in terms of conjugate coordinates.
(e) Show that $\frac{d \bar{z}}{d z}$ does not exist anywhere.

$$
O_{r}
$$

Prove that $f(z)=\left\{\begin{array}{cc}z^{2}, & z \neq z_{0} \\ 0, & z=z_{0}\end{array}\right.$ where
$z_{0} \neq 0$ is discontinuous at $z=z_{0}$.
(f) Find the Cauchy-Riemann equations for an analytic function $f(z)=u+i v$, where
$z=x+i y$. Or
Find the equation
the line joining z_{1} and the circle having
4. (a) Write the point at which the function $f(z)=\frac{1+z}{1-z}$ is not analytic.
(b) Define singularity of a function.
(c) Write the statement of Cauchy's integral formula.
(d) Prove the equivalence of

$$
\begin{equation*}
\frac{\partial}{\partial x}=\frac{\partial}{\partial z}+\frac{\partial}{\partial \bar{z}} \tag{3}
\end{equation*}
$$

(e) Find the analytic function $f(z)=u+i v$, where $u=e^{x}(x \cos y-y \sin y)$.

Or

Find the value of the integral $\int \frac{d z}{z-a}$ round a circle whose equation is $|z-a|=r$.
5. (a) Define radius of convergence.
(b) Write the necessary and sufficient condition that $\sum_{n=1}^{\infty}\left(a_{n}+i b_{n}\right)$ converges, where a_{n} and b_{n} are real.

161

(c) Define a power series.
(d) State and prove the fundamental theorem of algebra.

Or
Expand $f(z)=\log (1+z)$ in a Taylor's series about $z=0$.
6. (a) Let R be the radius of convergence of the
series

$$
\sum_{n=0}^{\infty} a_{n} z^{n}
$$

Then write the radius of convergence of
the series

$$
\sum_{n=0}^{\infty} n a_{n} z^{n-1}
$$

(b) Choose the correct answer from the An absolutely convergent series is (i) divergent
(ii) convergent
(iii) oscillatory
(iv) conditionally convergent
(c) State and prove Laurent's theorem.

Or
Expand $f(z)=\frac{1}{(z+1)(z+3)}$ in a Laurent series valid for $1<|z|<3$.

