3 SEM TDC MTMH (CBCS) C 6

2021

(Held in January/February, 2022)

MATHEMATICS

(Core)

Paper: C-6

(Group Theory—I)

Full Marks: 80

Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

(a) What, is the inverse of the element 13 in Z₂₀?
 (b) List the elements of U(20).
 (c) Let G be a group and a, b∈ G such that a³ = e, aba⁻¹ = b². Find O(b).
 (d) Let G be a group, then prove that (ab)⁻¹ = b⁻¹a⁻¹, ∀ a, b∈ G

- (e) In D_4 , find all elements X such that
 - (i) $X^3 = V$
 - (ii) $X^3 = R_{00}$
 - (iii) $X^3 = R_0$
 - (iv) $X^2 = R_0$

Or

Construct a complete Cayley table for D_3 .

- (f) Prove that the set $G = \{1, 2, 3, 4, 5, 6\}$ is a finite abelian group of order 6 with respect to multiplication modulo 7.
- **2.** (a) Let H and K be two subgroups of a group G. Then, write the condition such that $H \cup K$ may be a subgroup of G.
 - (b) Define index of a subgroup in a group.
 - (c) Prove that a non-empty subset H of a finite group G is a subgroup of G iff HH = H.
 - (d) Define normalizer of an element in a group G and also show that N(a) is a subgroup of the group G where $a \in G$.

22P/92

5

1

2

Or

Prove that $O(C(a)) = 1$ if and only if $a \in Z(G)$.	
Prove that the relation of conjugacy is an equivalence relation.	4
Write all the subgroups of a cyclic group of order 12.	1
State Fermat's little theorem.	1
Prove that a group of prime order has no proper subgroup.	2
Give an example of a cyclic group whose order is not prime.	2

G.	Let $a, b \in G$. Then show that
(i)	$Ha = Hb \text{ iff } ab^{-1} \in H$

Let G be a group and H be a subgroup of

- (ii) Ha is a subgroup of G iff $a \in H$ 4
- (f) Let H be a subgroup of a finite group G.

 Then prove that the order of H divides the order of G.

(e)

(a)

(b)

(c)

(d)

(e)

(g) Prove that an infinite cyclic group has exactly two generators.

Or

Prove that the order of a finite cyclic group is equal to the order of its generator.

- **4.** (a) State Cauchy's theorem for finite abelian group.
 - (b) Prove that quotient group of an abelian group is abelian.
 - (c) Prove that every subgroup of a cyclic group is normal.
 - (d) Let H and K be two subgroups of a group G. Then prove that HK is a subgroup of G if K is normal subgroup of G. Also if H and K both are normal subgroups, then HK is also normal subgroup of G.
 - (e) If G_1 and G_2 are groups, then prove that (i) identity is the only element common to $G_1 \times \{e_2\}$ and $\{e_1\} \times G_2$

5

1

2

3

- (ii) every element of $G_1 \times G_2$ can be uniquely expressed as the product of an element in $G_1 \times \{e_2\}$ by an element in $\{e_1\} \times G_2$
 - (iii) $G_1 \times G_2 \cong G_2 \times G_1$ 1+2+2=5

Let H be a subgroup of a group G such that $x^2 \in H$, $\forall x \in G$. Then prove that H is normal subgroup of G. Also prove that G/H is abelian.

- **5.** (a) Let H be a normal subgroup of a group G and $f: G \to G/H$ such that f(x) = Hx, $\forall x \in G$. Then prove that f is an epimorphism.
 - (b) Let f be a homomorphism from a group G into a group G'. Then prove that
 - (i) $f(a^{-1}) = [f(a)]^{-1}, \forall a \in G$
 - (ii) if O(a) is finite, then O(f(a))|O(a) where $a \in G$
 - (c) Let H and K be two normal subgroups of a group G such that $H \subseteq K$. Then prove that $\frac{G}{K} \cong \frac{G/H}{K/H}$.

5

2

(d) Prove that the necessary and sufficient condition for a homomorphism of a group G onto a group G' with kernel K to be an isomorphism is that $K = \{e\}$.

Or .

5

State and prove Cayley's theorem.

drive Oxology with to **