Total No. of Printed Pages-7

2 SEM TDC MTMH (CBCS) C 3

2022

(June/July)

MATHEMATICS

(Core)

Paper: C-3

(Real Analysis)

Pass Marks: 32

Time: 3 hours

1

2

Full Marks: 80

The figures in the margin indicate full marks for the questions

1. (a) Define ε -neighbourhood of a point. Find the infimum and supremum, if it exists for the set $A = \{x \in \mathbb{R} : 2x + 5 > 0\}$. (b)

(Turn Over) ^{22P}/1379

(d)

(e)

2. (a)

(b)

(c)

22P/1379

Let

If

 $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$

denotes the infimum of S.

Property of real numbers.

and for $a \in \mathbb{R}$, a+S

 $\sup(a+S)=a+\sup(S)$, where

denotes the supremum of S.

 $a+S=\{a+s:s\in S\}.$

numbers.

Show that

then show that inf S=0, where inf S

State and prove that Archimedean

Let $S \subseteq \mathbb{R}$ be a set that is bounded above

State the Completeness Property of real

 $\sup\left\{1-\frac{1}{n}:n\in\mathbb{N}\right\}=1$

 $\bigcap_{n=1}^{\infty} I_n = 0$

 $I_n = \left[0, \frac{1}{n}\right]$

for $n \in \mathbb{N}$. Prove that

is defined

that

(Continued)

 $\sup(S)$

Show

3

5

(d)

(3)

If

 $S = \left\{ \frac{1}{n} - \frac{1}{m} : n, \ m \in \mathbb{N} \right\}$

find inf S and supS. State and prove the nested interval (e) property.

5

(Turn Over)

Or Prove that there exists a real number xsuch that $x^2 = 2$.

the Monotone Subsequence State 1 Theorem.

Show that $\lim_{n\to\infty}\left(\frac{n}{n^2+1}\right)=0$

Show that a convergent sequence of real 3 numbers is bounded. (c)

^{22P}/1379

4

5

(d) Show that

$$\lim_{n\to\infty}(b^n)=0$$

if 0 < b < 1.

.

Or

Show that

$$\lim_{n\to\infty}(c^{\frac{1}{n}})=1$$

for c > 1.

(e) State and prove the Monotone Convergence theorem.

Or

Let
$$Y:=(y_n)$$
 be defined as $y_1=1$, $y_{n+1}=\frac{1}{4}y_n+2$, $n\geq 1$. Show that (y_n) is monotone and bounded. Find the limit.

- 4. (a) Give an example of two divergent sequences such that their sum
 - (b) Prove that the limit of a sequence of real numbers is unique.

5

1

$$\lim_{n\to\infty}x_n=0$$

$$m(|x_n|)$$

$$\lim_{n\to\infty}(|x_n|)=0$$

(i)
$$x_n = \frac{(-1)^n n}{n+1}$$

$$n+1$$
 n^2

(ii) $x_n = \frac{n^2}{n+1}$

$$+1$$
 $n^2 + 3$

(iii) $x_n = \frac{2n^2 + 3}{-2 + 1}$

Define Cauchy sequence. Prove that a sequence of real numbers is Cauchy if

and only if it is convergent.

of the sequence

for $n \in \mathbb{N}$.

Establish the convergence or divergence

 $y_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$

1+4=5

5

(Turn Over)

3

(d)

(e)

^{22P}/1379

4

5

161

- 5. (a) State the Cauchy Criterion for convergence of a series.
 - (b) Prove that if

$$\sum_{n=1}^{\infty} x_n ...$$

converges then

$$\lim_{n\to\infty}(x_n)=0$$

(c) Prove that if

diverges.

(d)

$$\sum_{m=1}^{\infty} \frac{1}{n}$$

Show that the series

 $\sum_{n=1}^{\infty} x_n$ converges if and only if the sequence

- $S = (s_k)$ of partial sums is bounded. Define absolute convergence. Show that if a series of real numbers is absolutely convergent then it is convergent. 1+3=4
- (f) Let f be a positive, decreasing function on $\{t: t \ge 1\}$. Show that the series

$$\sum_{k=1}^{\infty} f(k)$$

1

3

converges if and only if the improper integral

$$\int_{1}^{\infty} f(t)dt = \lim_{b \to \infty} \int_{1}^{b} f(t)dt$$

exists.

5

O1

Show that the series

$$\sum_{n=1}^{\infty} \cos n$$

is divergent.
