2021

(March)

MATHEMATICS
 (Major)

Course : 101
(Classical Algebra, Trigonometry and Vector Calculus)
$\frac{\text { Full Marks : } 80}{\text { Pass Marks : } 32 / 24}$
Time : 3 hours
The figures in the margin indicate full marks for the questions

Group-A

(Classical Algebra)

1. (a) Write the name of the set with which the elements of a sequence can be put in a one-one correspondence.
(b) Write two distinct elements of $\left\{S_{n}\right\}=\left\{(-1)^{n}, n \in N\right\}$.

(2)

(c) Show that a bounded sequence may not be convergent.

Or

Show that the sequence $\left\{S_{n}\right\}$, where $S_{n}=\frac{1}{n}, n \in N$, has 0 as a limit point.
(d) Prove that every convergent sequence is bounded and has a unique limit.

Or
Show that the sequence $\left\{S_{n}\right\}$, where

$$
S_{n}=1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2 n+1}
$$

cannot converge.
2. (a) "If the partial sum of an infinite series is convergent, then the infinite series is divergent." State true or false. 1
(b) Define an infinite series. 2
(c) State Cauchy's root test.
(d) Show that the series

$$
\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\cdots
$$

is not convergent.

(3)

(e) Show that the sequence $\left\{U_{n}\right\}$, where $U_{n}=\sin \frac{1}{n}$, diverges.

Or

Show that the series

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{3}}+\frac{1}{4^{4}}+\cdots
$$

converges.
(f) Test the behaviour of the series

$$
\begin{equation*}
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 2^{2}}+\frac{1}{3 \cdot 2^{3}}+\frac{1}{4 \cdot 2^{4}}+\cdots \tag{4}
\end{equation*}
$$

Or

If ΣU_{n} is a positive term series such that

$$
\lim _{n \rightarrow \infty} \frac{U_{n+1}}{U_{n}}=l
$$

then show that the series converges, if $l<1$.
3. (a) Write what type of equation has at least one real root.
(b) Write the transformed equation with sign changed of the roots of the equation

$$
\begin{equation*}
4 x^{3}-11 x^{2}+5 x+3=0 \tag{1}
\end{equation*}
$$

(4)

(c) Form the biquadratic equation which shall have two of its roots as $i, 2 i$.
(d) If α, β, γ be the roots of the equation

$$
x^{3}+p x^{2}+q x+r=0
$$

then find the value of $\sum \alpha^{2}$.
2
(e) If α and β are the roots of $x^{3}-p x^{2}+q x-r=0$ such that $\alpha+\beta=0$, then show that $p q=r$.

Or

Solve the equation

$$
x^{3}-9 x^{2}+23 x-15=0
$$

whose roots are in arithmetic
progression. roots of the equation $x^{3}-x-1=0$.
Or

If α, β, γ are the roots of the equation

$$
x^{3}-p x^{2}+q x-r=0
$$

then form the equation whose roots are

$$
\beta \gamma+\frac{1}{\alpha}, \gamma \alpha+\frac{1}{\beta}, \alpha \beta+\frac{1}{\gamma}
$$

(5)

Group-B

(Trigonometry)

4. (a) Write the value of

$$
\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)^{2}
$$

(b) Choose the correct answer for the following :
$\frac{1}{\cos \theta-i \sin \theta}$ is equal to
(i) $\cos \theta+i \sin \theta$
(ii) $\sin \theta+i \cos \theta$
(iii) $\cos \theta-i \sin \theta$
(iv) $\cos 2 \theta-i \sin 2 \theta$
(c) Simplify (any one) :
(i) $\frac{(\cos \theta+i \sin \theta)^{5}}{(\cos \theta-i \sin \theta)^{3}}$
(ii) $\frac{(\cos \theta-i \sin \theta)^{7}}{(\cos \theta+i \sin \theta)^{7}}$
(d) If $a=\cos 2 x+i \sin 2 x, b=\cos 2 y+i \sin 2 y$, then show that

$$
\frac{a-b}{a+b}=i \tan (x-y)
$$

(6)

Or

Show that
$(1+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-i \sin \theta)^{n}$

$$
=2^{n+1} \cos ^{n} \frac{\theta}{2} \cos \frac{n \theta}{2}
$$

5. (a) Show that

$$
e^{i \frac{\pi}{2}}=i
$$

(b) Resolve $e^{\sin (x+i y)}$ into real and imaginary parts.

$$
3
$$

Or

If $\tan (\alpha+i \beta)=x+i y$, then prove that

$$
x^{2}+y^{2}+2 x \cot 2 \alpha=1
$$

6. (a) Write the expansion of $\tan ^{-1} x$ in terms of x, where $|x| \leq 1$.
(b) Show that
$\log \sec x=\frac{1}{2} \tan ^{2} x-\frac{1}{4} \tan ^{4} x+\frac{1}{6} \tan ^{6} x-\cdots$
Or

Find the sum of the series

$$
1-\frac{1}{3 \cdot 4^{2}}+\frac{1}{5 \cdot 4^{4}}-\cdots
$$

(7)

7. (a) Find the sum of the series (any one):
(i) $1+\cos \alpha+c^{2} \cos 2 \alpha+c^{3} \cos 3 \alpha+\cdots$
(ii) $\cos \theta+\frac{\sin \theta}{1!} \cos 2 \theta+\frac{\sin ^{2} \theta}{2!} \cos 3 \theta+\cdots$
(b) Show that

$$
\tanh (x+y)=\frac{\tanh x+\tanh y}{1+\tanh x \tanh y}
$$

Or
Prove that

$$
\sinh ^{-1}(\cot x)=\log (\cot x+\operatorname{cosec} x)
$$

GROUP-C

(Vector Calculus)

8. (a) Find $\frac{\partial}{\partial x}\left(x^{2} y \hat{i}+y^{2} z \hat{j}+z^{2} x \hat{k}\right)$.
(b) A particle moves along a curve whose parametric equations are $x=2 t^{2}+3 t$, $y=3 \cos t, z=t$. Determine its velocity and acceleration at any time.
(c) Let $\vec{f}(t)$ has constant magnitude. Show that $\vec{f} \cdot \frac{\overrightarrow{d f}}{d t}=0$.
(d) Show that

$$
\begin{equation*}
\nabla \cdot(\phi \vec{f})=(\nabla \phi) \cdot \vec{f}+\phi(\nabla \cdot \vec{f}) \tag{4}
\end{equation*}
$$

Or
Evaluate $\nabla(\log r)$, where

$$
r=|\vec{r}|, \vec{r}=x \hat{i}+y \hat{j}+z \hat{k}
$$

(e) Show that

$$
\begin{equation*}
\nabla \cdot(\nabla \phi)=\nabla^{2} \phi, \phi \equiv \phi(x, y, z) \tag{4}
\end{equation*}
$$

Or
Show that curl grad $\phi=0$.
(f) Define an irrotational vector. 2

