4 SEM TDC MTMH (CBCS) C 10

2022

(June/July)

MATHEMATICS

(Core)

Paper: C-10

(Ring Theory and Linear Algebra—I)

Full Marks: 80

Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Give an example of a ring without unity. 1
 - (b) Define unit element in a ring.
 - (c) If the unity and the zero element of a ring R are equal, show that $R = \{0\}$, where 0 is the zero element of R.

(d)	Give an example of a subring which is not an ideal.
(e)	If I is an ideal of a ring R with unity such that $1 \in I$, show that $I = R$.
(f)	Show that \mathbb{Z}_{12} is not an integral domain.
(g)	Show that every field is an integral domain. Give an example to show that every integral domain is not necessarily a field. 4+1=5
	Or and
	Define characteristic of a ring. Prove that the characteristic of an integral domain is 0 or a prime. 1+4=5
(h)	Show that if A and B are two ideals of a ring R , then $A+B$ is an ideal of R containing both A and B , where
	$A+B=\{a+b\mid a\in A,\ b\in B\}$
	Or
	Show that in a Boolean ring R every

prime ideal $P \neq R$ is maximal.

- 2. (a) Define kernel of a ring homomorphism.
 - (b) If $f: R \to R'$ be a ring homomorphism, show that f(-a) = -f(a).
 - (c) Let R be a commutative ring with char (R) = 2. Show that $\phi: R \to R$ defined by $\phi(x) = x^2$ is a ring homomorphism.
 - (d) Let $R = \left\{ \begin{bmatrix} a & b \\ b & a \end{bmatrix} : a, b \in \mathbb{Z} \right\} \text{ and } \phi \colon \mathbb{R} \to \mathbb{Z}$

defined by

$$\phi\left(\begin{bmatrix} a & b \\ b & a \end{bmatrix}\right) = a - b$$

Find ker o.

(e) Let $f:R \to R'$ be an onto homomorphism, where R is a ring with unity. Show that f(1) is the unity of R'.

Or

Prove that a homomorphism $f: R \to R'$ is one-one if and only if ker $f = \{0\}$.

1

2

2

2

3

(f)	Show that the relation of isomorphism
	in rings is an equivalence relation.

. 5

Or

Let A, B be two ideals of a ring R. Show that

$$\frac{A+B}{A} \cong \frac{B}{A \cap B}$$

5

3. (a) Is R a vector space over C?

1

(b) Define zero subspace of a vector space.

1

(c) For $x = (x_1, x_2)$ and $y = (y_1, y_2)$ of \mathbb{R}^2 and $\alpha \in \mathbb{R}$, let $x + y = (x_1 + y_1, x_2 + y_2)$ and $\alpha x = \alpha(x_1, x_2) = (\alpha x_1, 0)$. Is \mathbb{R}^2 a vector space with respect to above operations? Justify your answer.

×2 eal

(d) Let V be a vector space of all 2×2 matrices over the field \mathbb{R} of real numbers. Show that the set S of all 2×2 singular matrices over \mathbb{R} is not a subspace of V.

(e)	Consider the vectors $v_1 = (1, 2, 3)$	
PL 1	$v_2 = (2, 3, 1)$ in $\mathbb{R}^3(\mathbb{R})$. Find k so	that
	u = (1, k, 4) is a linear combination	n of
	v_1 and v_2 .	

(f) Show that the vectors $v_1 = (1, 1, 0)$, $v_2 = (1, 3, 2)$ and $v_3 = (4, 9, 5)$ are linearly dependent in $\mathbb{R}^3(\mathbb{R})$.

(g) Prove that any basis of a finitedimensional vector space is finite.

Or

Let W_1 and W_2 be two subspaces of a finite-dimensional vector space. Then show that

$$\dim(W_1 + W_2) = \dim W_1 + \dim W_2$$

- $\dim (W_1 \cap W_2)$ 4

- 4. (a) Let T be a linear transformation from a vector space U to a vector space V over the field F. Prove that the range of T is a subspace of V.
 - (b) Examine whether the following mappings are linear or not: 2+2=4

(i) $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (|x|, y+z)

(Turn Over)

2

3

4

(ii)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by
$$T(x, y) = (x + y, x)$$

- (c) If $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x + y, x y, y) is a linear transformation, find the rank and nullity of T.
- (d) Let T be a linear operator on \mathbb{R}^2 defined by $T(x_1, x_2) = (x_1, 0)$. Find the matrix of T with respect to the basis $\{v_1, v_2\}$, where $v_1 = (1, 1)$ and $v_2 = (2, -1)$.
- (e) Let $T: V \to U$ be a linear transformation. Show that

$$\dim V = \operatorname{rank} T + \operatorname{nullity} T$$

Or

Prove that a linear transformation $T:V \to U$ is non-singular if and only if T carries each linearly independent subset of V onto a linear independent subset of U.

5

(f) Define isomorphism of vector spaces.

Prove that the mapping

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \vdash (a, b, c, d)$$

from $M_2(\mathbb{R})$ to \mathbb{R}^4 is an isomorphism.

5

5

Or

Prove that every n-dimensional vector space over a field F is isomorphic to F^n .
