tal No. of Printed Pages-7

5 SEM TDC STSH (CBCS) C 11

2021

(Held in January/February, 2022)

STATISTICS

(Core)

Paper : C-11

(Stochastic Processes and Queuing Theory)

Full Marks : 50 Pass Marks : 20

Time : 2 hours

The figures in the margin indicate full marks for the questions

 Choose the correct answer from the following 1×5=5

- (a) Set of states is called
 - (i) parameter
 - (ii) sample space
 - (iii) state space
 - (iv) None of the above

(Turn Over)

22P/19

- +I TTIN 1

- Higher transition probabilities can be (b)computed by
 - (i) spectral decomposition method
 - (ii) Chapman-Kolmogorov equation
 - (iii) generating function method
 - (iv) All of the above
- Which of the following statements is (c)not correct?
 - (i) An absorbing state is recurrent.
 - (ii) An ergodic state is recurrent.
 - (iii) Recurrent state is periodic.
 - (iv) An absorbing state is aperiodic.
- The interval between two successive (d)occurrences of a Poisson process $\{N(t), t > 0\}$ has a/an
 - (i) negative exponential distribution
 - (ii) Poisson distribution
 - (iii) gamma distribution
 - (iv) exponential distribution
- $M/M/1:\infty$ model follows (e)
 - (i) geometric distribution

 - (ii) exponential distribution
 - (iii) Poisson distribution
 - (iv) negative exponential distribution

22P/19

(Continued)

2. Answer the following questions in brief : 2×5=10

- Give some examples of continuoustime discrete state space stochastic (a)process.
- Distinguish between irreducible and reducible Markov chains. (b)
- Define transient and persistent states. (c)
- State the characteristics of Yule-Furry (d)process.

What is the rationale behind the study

- of steady-state behaviour? (e)
- **3.** (a)

Define bivariate probability generating function. Write the properties of bivariate probability generating function. Consider a series of Bernoulli trials with probability of success p. Suppose that X denotes the number of failures preceding the first success and Y denotes the number of following the first success and preceding the second success. The sum (X+Y) gives the number of failures preceding the second success. Show that p.g.f. of X + Y is $P(s, s) = \left(\frac{P}{1-sq}\right)^2$ 1+2+4=7

(Turn Over)

(3)

Or

- (b) Define stochastic process and write down its significance in Statistics. Consider the process $X(t) = A\cos\omega t + B\sin\omega t$, where A and B are uncorrelated r.v.'s each with mean 0 and variance 1, and ω is a positive constant. Is the process covariance stationary? 1+2+4=7
- **4.** Answer any *two* questions from the following : $7 \times 2 = 14$
 - (a) Consider a Markov chain $\{X_n, n \ge 0\}$ with states 0 and 1 having t.p.m.

$$X_{n}$$

$$0 1$$

$$X_{n-1} \int_{1}^{0} \begin{pmatrix} 1 - (1 - c)p & (1 - c)p \\ (1 - c) & (1 - p) & (1 - c)p + c \end{pmatrix},$$

$$0$$

With initial distribution

 $P\{X_0 = 1\} = p_1 = 1 - P\{X_0 = 0\}$ Show that

$$corr{X_{n-k}, X_n} = C^K \text{ for } 0 < c < 1$$

22P/19

7

(Continued)

(b) Compute the stationary distribution of Markov chain $\{X_n, n \ge 1\}$ with states $S = \{0, 1, 2\}$ and t.p.m.

$$P = \begin{pmatrix} 0 & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & 0 & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & 0 \end{pmatrix}$$

(c)

Show that the states of an irreducible Markov chain (finite or infinite) are of same type, i.e., either transient or persistent. Let $\{X_n, n \ge 0\}$ be a Markov chain having states $S = \{1, 2, 3, 4\}$ and transition matrix

P =	1	2	0	0	
	3	0	0	0	
	1	0	$\frac{1}{2}$	0	
	20	0	1 2	$\frac{1}{2}$	

Discuss the nature of the states. 3+4=7

(d) State the ergodic theorem of Markov chain. Consider a three-state Markov chain with $S = \{1, 2, 3\}$ and initial distribution $\pi_0 = [0 \cdot 7, 0 \cdot 2, 0 \cdot 1]$ and t.p.m.

$$P = \begin{bmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{bmatrix}$$

(Turn Over)

7

(6)

Compute

(i) $P(X_1 = 3)$

(ii)
$$P(X_3 = 1 / X_1 = 2)$$

(iii) $P(X_0 = 1, X_1 = 2, X_2 = 3)$

Also draw the transition graph of the Markov chain. 2+3+2=7

5. (a) State the postulates of Poisson process. If $\{N(t)\}$ is a Poisson process, show that correlation coefficient between N(t) and N(t+S) is $\left\{\frac{t}{t+s}\right\}^{\frac{1}{2}}$. 2+5=7

Or

(b)Derive the probability distribution of Yule-Furry process.

6. (a) What do you understand by a queue? Give some important applications of queuing theory. Queue is a management of congestions. Justify it.

1+3+3=7

7

(Continued)

22P/19

Or

(b) In the case of (M / M / 1): (N / FCFS)queuing model, derive the steady-state probability distribution and obtain the expressions for—

- (i) expected number of customers in the system;
- (ii) expected number of customers in the queue. 5+2=7

5 SEM TDC STSH (CBCS) C 11

22P-500/19