5 SEM TDC MTMH (CBCS) C 11

2021

(Held in January/February, 2022)

MATHEMATICS

(Core)
Paper : C-11
(Multivariate Calculus)
$\frac{\text { Full Marks : } 80}{\text { Pass Marks : } 32}$

Time : 3 hours
The figures in the margin indicate full marks
for the questions
(a) Define limit of a function of two variables.
(b) Find

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(0,1)} \frac{x-x y+3}{x^{2} y+5 x y-y^{3}} \tag{1}
\end{equation*}
$$

(c) Show that the function

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x y^{3}}{x^{2}+y^{6}} ; & (x, y) \neq(0,0) \\
0 \quad ; & (x, y)=(0,0)
\end{array}\right.
$$

is not continuous at $(0,0)$.
(d) If $u=e^{x y z}$, then show that

$$
\begin{equation*}
\frac{\partial^{3} u}{\partial x \partial y \partial z}=\left(1+3 x y z+x^{2} y^{2} z^{2}\right) e^{x y z} \tag{3}
\end{equation*}
$$

Or

If $w=x \sin y+y \sin x+x y$, then verify that $w_{x y}=w_{y x}$.
2. (a) Define total differential of a function of two variables.
(b) For changes in a function's values along a helix $w=x y+z, x=\cos t, y=\sin t$ and $z=t$. Find $\frac{d w}{d t}$.
(c) State and prove sufficient condition for differentiability of a function of two
variables.

Or
Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w=x+2 y+z^{2}, x=\frac{r}{s}, y=r^{2}+\log x$ and
$z=2 r$.
3. (a) Find the equation of tangent plane at $(1,1,1)$ for the curve $x^{2}+y^{2}+z^{2}=3$.

13)

(b) Find the local extreme values of the function

$$
\begin{equation*}
f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4 \tag{3}
\end{equation*}
$$

(c) Find the extreme values of $f(x, y)=x y$ taken on the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{2}=1$ by the method of Lagrange's multipliers.

Or

The plane $x+y+z=1$ cuts the cylinder $x^{2}+y^{2}=1$ in an ellipse. Find the points on the ellipse that lie closest to and farthest from the origin.
4. (a) Find ∇f, if

$$
f(x, y, z)=x^{2}+y^{2}-2 z^{2}+z \log x
$$

(b) Prove that $\operatorname{div} \vec{r}=3$.2
(c) Find curl \vec{f}, where

$$
\begin{equation*}
\vec{f}=x^{2} y \hat{i}+x z \hat{j}+2 y z \hat{k} \tag{2}
\end{equation*}
$$

5. (a) Write one property of double integral. 1

(4)

(b) Evaluate

$$
\iint_{R} f(x, y) d A
$$

for $f(x, y)=1-6 x^{2} y, R: 0 \leq x \leq 2$ and
$-1 \leq y \leq 1$.
(c) Find the area enclosed by the Lemniscate $r^{2}=4 \cos 2 \theta$.
6. (a) Define triple integrals.
(b) Evaluate :

$$
\int_{y=0}^{3} \int_{x=0}^{2} \int_{0}^{1}(x+y+z) d z d x d y
$$

(c) Find the volume of the upper region D cone $\phi=\frac{\pi}{3}$.

Or

Find the volume of the region enclosed by the cylinder $x^{2}+y^{2}=4$ and the planes $z=0$ and $y+z=4$.
7. (a) Write the formula for triple integral in cylindrical coordinates.
(b) Evaluate :

$$
\int_{0}^{2 \pi} \int_{0}^{\theta / 2 \pi} \int_{0}^{3+24 r^{2}} d z r d r d \theta
$$

Or
Find the volume of the region in the first octant bounded by the coordinate planes, the plane $y=1-x$ and the surface $z=\cos \frac{\pi x}{2}, 0 \leq x \leq 1$.
8. (a) Find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ for the transformation $\quad x=u \cos v \quad$ and
$y=u \sin v$.
(b) Evaluate

$$
\int_{0}^{4} \int_{x=\frac{y}{2}}^{x=\frac{y}{2}+1} \frac{2 x-y}{2} d x d y
$$

by applying the transformation $u=\frac{2 x-y}{2}, v=\frac{y}{2}$.
(c) Integrate $f(x, y, z)=x-3 y^{2}+z$ over the line segment C joining the origin and the point (1, 1, 1).

(6)

Or

Evaluate $\int_{C}(x y+y+z) d s$ along the curve

$$
\vec{r}(t)=2 t \hat{i}+t \hat{j}+(2-2 t) \hat{k}, \quad 0 \leq t \leq 1
$$

9. (a) Define vector field and write the formula for vector field in three dimensions. $1+1=2$
(b) A coil spring lies along the helix

$$
\vec{r}(t)=(\cos 4 t) \hat{i}+(\sin 4 t) \hat{j}+t \hat{k} ; 0 \leq t \leq 2 \pi
$$

The spring density is a constant $\delta=1$. Find the spring's mass and moments of inertia and radius of gyration about the
z-axis.

Find the work done by the force

$$
\vec{F}=\left(y-x^{2}\right) \hat{i}+\left(z-y^{2}\right) \hat{j}+\left(x-z^{2}\right) \hat{k}
$$

over the curve $\vec{r}(t)=t \hat{i}+t^{2} \hat{j}+t^{3} \hat{k}$; $0 \leq t \leq 1$ from ($0,0,0$) to ($1,1,1$).
(c) Write the fundamental theorem for line integrals.
Or

(7)

(b) Evaluate the integral $\oint_{C}\left(x y d y-y^{2} d x\right)$ by using Green's theorem, where C is the square cut from the first quadrant by the lines $x=1$ and $y=1$.
(c) Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ by using Stokes' theorem, if $\vec{F}=x z \hat{i}+x y \hat{j}+3 x z \hat{k}$ and C is the boundary of the portion of the plane $2 x+y+z=2$ in the first octant and traversed counter-clockwise.

Or

Find the surface area of a sphere of radius a with parametrization formula
$\vec{r}(\phi, \theta)=(a \sin \phi \cos \theta) \hat{i}+(a \sin \phi \sin \theta) \hat{j}+(a \cos \phi) \hat{k}$ where $0 \leq \phi \leq \pi$ and $0 \leq \theta \leq 2 \pi$.
(d) State and prove divergence theorem.

* *

