Total No. of Printed Pages-8

5 SEM TDC CHMH (CBCS) C 12

2021
(Held in January/February, 2022)

CHEMISTRY

(Core)
Paper: C-12
(Physical Chemistry)
$\frac{\text { Full Marks : } 53}{\text { Pass Marks : } 21}$
Time : 3 hours
The figures in the margin indicate full marks for the questions

1. Choose the correct answer from the following :
(a) The degeneracy of rotational level of a diatomic molecule having energy $\frac{h^{2}}{4 \pi^{2} I}$ is
(i) 0
(ii) 1
(iii) 2
(iv) 3
(b) Vibrational transition exists in
(i) infrared region
(ii) microwave region
(iii) visible region
(iv) radio-frequency region
(c) The degeneracy of a particle of mass m confined in a three-dimensional box having energy level equal to $\frac{14 h^{2}}{8 m a^{2}}$ is
(i) 7
(ii) 14
(iii) 6
(iv) 8
(d) In photosynthesis, chlorophyll acts as a
(i) catalyst
(ii) photosensitizer
(iii) photoinhibitor
(iv) All of the above
2. Answer any four questions from the following :
(a) Microwave studies are done only in gaseous state. Explain.

$3)$

(b) Explain why the nuclei H^{1} and ${ }^{13} \mathrm{C}$ are suitable for NMR investigation.
(c) Write a short note on fingerprint region.
(d) What is chemiluminescence? Give one example.
(e) Show that the functions $\psi_{1}=\left(\frac{1}{2 \pi}\right)^{1 / 2}$ and $\psi_{2}=\left(\frac{1}{\pi}\right)^{1 / 2} \cos x$ in the interval $x=0$ to $x=2 \pi$ are orthogonal to each other.
(f) Show that $\sin 4 x$ is an eigenfunction of the operator $\frac{d^{2}}{d x^{2}}$. Find the eigenvalue.
UNIT-I
3. Answer any four questions from the following :

$$
4 \times 4=16
$$

(a) What are normalized and orthogonal wave functions? For the function $\psi(\theta)=\sin \theta$, where the variable θ changes continuously from 0 to 2π, determine whether it is normalized or not. If it is not, find the normalization factor.

$$
1+2+1=4
$$

(b) Ψ_{i} and ψ_{j} represent the wave function corresponding to two different states of a particle moving freely in a onedimensional box. Show that they are orthogonal to each other.
(c) Consider a particle of mass m confined in a two-dimensional box of edge lengths a and b. Find the energy and wave functions by solving the Schrödinger's equation. The potential energy

$$
\begin{aligned}
V(x, y) & =0, \quad \text { for } 0 \leq x \leq a \text { and } 0 \leq y \leq b \\
& =\infty, \text { elsewhere }
\end{aligned}
$$

Also write the expression for energy when $a=b$.
(d) (i) What does the term 'degenerate levels' mean? Determine the degree of degeneracy of the level $\frac{17 h^{2}}{8 m a^{2}}$ of a particle in a cubical box. $\quad 1+1=2$
(ii) Form Schrödinger wave equation
for a one-dimensional simple
harmonic oscillator.

(5)

(e)
(i) The distance between the atoms of a diatomic molecule is r and its reduced mass is μ. If the angular momentum is L and moment of inertia is I, then prove that kinetic energy $T=\frac{L^{2}}{2 \mu r^{2}}$.
(ii) Write the expression for energy for a rigid rotator.
(f) (i) Write down the Schrödinger wave equation in polar form for H -atom.
(ii) Calculate the most probable distance $r_{m p}$ of the electron from the nucleus in the ground state of hydrogen atom, given that the normalized ground state wave function is

$$
\psi_{1 s}=\frac{1}{\sqrt{\pi} a_{0}^{3 / 2}} e^{\left(-r / a_{0}\right)}
$$

Given $a_{0}=0.529 \AA$.
(g) (i) Write down the equation showing Hamiltonian operator for onedimensional harmonic oscillator.

16)

Abstract

(ii) Sketch the variation of radial probability density against the distance from the nucleus for $2 s$ state for hydrogen atom.

UNIT-II

4. Answer any two questions from the following :
(a) (i) Show that the lines in the rotational spectrum of a diatomic molecule are equispaced under the rigid rotator approximation.
(ii) A transition from $J=0$ to $J=1$ in the rotational spectrum of CO corresponds to $3.84235 \mathrm{~cm}^{-1}$. Calculate the moment of inertia and bond length.
(iii) Write the selection rule for rotational spectra.
(b) (i) Show that the frequency of the absorbed radiation in pure vibrational spectra is equal to the fundamental frequency of vibration v_{0} of the molecule.

(7)

(ii) Prove that the ratio of wave numbers of fundamental, first overtone and second overtone is approximately $1: 2: 3$. $21 / 2$
(iii) Roughly sketch the fundamental modes of vibrations of CO_{2} and show the infrared active vibrations.3
(c) (i) State and explain Franck-Condon principle.
(ii) Explain why TMS is used as a reference substance in NMR spectroscopy.
(iii) Calculate the NMR frequency (in MHz) of the proton (${ }^{1} \mathrm{H}$) in a magnetic field of intensity 1.4092 tesla, given that $g_{N}=5.585$ and $\mu_{N}=5.05 \times 10^{-27} \mathrm{JT}^{-1}$.

Or
Briefly discuss Born-Oppenheimer approximation.
(iv) Write any one difference between fluorescence and phosphorescence.

UNIT-III

5. Answer any two questions from the following :
(a) State and explain Lambert-Beer law. Write the significance of molar extinction coefficient.
(b) Explain the term 'quantum yield'. Discuss briefly the reasons for high and low quantum yields. $\quad 11 / 2+3=4 \frac{1}{2}$
(c) What is photochemical equilibrium? Give example of a photochemical equilibrium in which only one reaction is light sensitive. Deduce an expression for equilibrium constant

* *

