Total No. of Printed Pages-8

5 SEM TDC CHMH (CBCS) C 12

2021

(Held in January/February, 2022)

CHEMISTRY

(Core)

Paper : C-12

(Physical Chemistry)

Full Marks : 53
Pass Marks : 21

Time : 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following : 1×4=4
 - (a) The degeneracy of rotational level of a diatomic molecule having energy $\frac{h^2}{4\pi^2 I}$ is

(i) 0
(ii) 1
(iii) 2
(iv) 3

²2P/147

(Turn Over)

(2)

- (b) Vibrational transition exists in
 - (i) infrared region
 - (ii) microwave region
 - (iii) visible region
 - (iv) radio-frequency region
- (c) The degeneracy of a particle of mass m confined in a three-dimensional box having energy level equal to $\frac{14h^2}{8ma^2}$ is
 - (i) 7

.

- *(ii)* 14
- *(iii)* 6
- (iv) 8
- (d) In photosynthesis, chlorophyll acts as a
 - (i) catalyst
 - (ii) photosensitizer
 - (iii) photoinhibitor
 - (iv) All of the above
- **2.** Answer any *four* questions from the following : 2×4=8
 - (a) Microwave studies are done only in gaseous state. Explain.

22P/147

(Continued)

Explain why the nuclei H^1 and ^{13}C are

suitable for NMR investigation.

(b)

- (c) Write a short note on fingerprint region.
- (d) What is chemiluminescence? Give one example.

(e) Show that the functions $\psi_1 = \left(\frac{1}{2\pi}\right)^{\frac{1}{2}}$ and $\psi_2 = \left(\frac{1}{\pi}\right)^{\frac{1}{2}} \cos x$ in the interval x = 0to $x = 2\pi$ are orthogonal to each other.

(f) Show that $\sin 4x$ is an eigenfunction of the operator $\frac{d^2}{dx^2}$. Find the eigenvalue.

Unit—I

- **3.** Answer any *four* questions from the following : 4×4=16
 - (a) What are normalized and orthogonal wave functions? For the function $\psi(\theta) = \sin \theta$, where the variable θ changes continuously from 0 to 2π , determine whether it is normalized or not. If it is not, find the normalization factor. 1+2+1=4

(Turn Over)

²2P**/147**

(3)

- (b) ψ_i and ψ_j represent the wave function corresponding to two different states of a particle moving freely in a onedimensional box. Show that they are orthogonal to each other.
- (c) Consider a particle of mass m confined in a two-dimensional box of edge lengths a and b. Find the energy and wave functions by solving the Schrödinger's equation. The potential energy

$$V(x, y) = 0$$
, for $0 \le x \le a$ and $0 \le y \le b$
= ∞ , elsewhere

Also write the expression for energy when a = b. 3+1=4

- (d) (i) What does the term 'degenerate levels' mean? Determine the degree of degeneracy of the level $\frac{17h^2}{8ma^2}$ of a particle in a cubical box. 1+1=2
 - (ii) Form Schrödinger wave equation for a one-dimensional simple harmonic oscillator.

22P/147

(Continued)

2

4

- (i) The distance between the atoms of
- a diatomic molecule is r and its reduced mass is μ . If the angular momentum is L and moment of inertia is I, then prove that kinetic energy $T = \frac{L^2}{2ur^2}$.
- (ii) Write the expression for energy for a rigid rotator.
- (f) (i) Write down the Schrödinger wave equation in polar form for H-atom. 1½
 - (ii) Calculate the most probable distance r_{mp} of the electron from the nucleus in the ground state of hydrogen atom, given that the normalized ground state wave function is

$$\psi_{1s} = \frac{1}{\sqrt{\pi}a_0^{3/2}} e^{(-r/a_0)}$$

Given $a_0 = 0.529$ Å. $2\frac{1}{2}$

(g) (i) Write down the equation showing Hamiltonian operator for onedimensional harmonic oscillator. 2

(Turn Over)

3

1

le)

22P/147

(ii) Sketch the variation of radial probability density against the distance from the nucleus for 2s state for hydrogen atom.

UNIT-II

- **4.** Answer any *two* questions from the following : 8×2=16
 - (a) (i) Show that the lines in the rotational spectrum of a diatomic molecule are equispaced under the rigid rotator approximation.
 - (ii) A transition from J=0 to J=1in the rotational spectrum of CO corresponds to 3.84235 cm⁻¹. Calculate the moment of inertia and bond length. 2+2=4
 - (iii) Write the selection rule for rotational spectra.
 - (b) (i) Show that the frequency of the absorbed radiation in pure vibrational spectra is equal to the fundamental frequency of vibration v_0 of the molecule. $2^{1/2}$

(Continued)

2

3

(7)

(ii) Prove that the ratio of wave numbers of fundamental, first overtone and second overtone is approximately 1:2:3. 2¹/₂

- (iii) Roughly sketch the fundamental modes of vibrations of CO₂ and show the infrared active vibrations.
- (c) (i) State and explain Franck-Condon principle.
 - (ii) Explain why TMS is used as a reference substance in NMR spectroscopy.
 - (iii) Calculate the NMR frequency (in MHz) of the proton (¹H) in a magnetic field of intensity 1.4092 tesla, given that $g_N = 5.585$ and $\mu_N = 5.05 \times 10^{-27} \text{ JT}^{-1}$.

Or

Briefly discuss Born-Oppenheimer approximation.

(iv) Write any one difference between fluorescence and phosphorescence. 1

(Turn Over)

3

2

2

22P/147

UNIT-III

- 5. Answer any two questions from the following : 4¹/₂×2=9
 - (a) State and explain Lambert-Beer law.
 Write the significance of molar extinction coefficient.
 - (b) Explain the term 'quantum yield'. Discuss briefly the reasons for high and low quantum yields. $1\frac{1}{2}+3=4\frac{1}{2}$
 - (c) What is photochemical equilibrium? Give example of a photochemical equilibrium in which only one reaction is light sensitive. Deduce an expression for equilibrium constant of a photochemical equilibrium. 1+1+2¹/₂=4¹/₂

22P-1500/147